h SUBJORMALICY OF OpERA“OR VALUED WEIGHITCDR SHIf?s

?,1_ ' Novak Ivanovski’

rn'th!tpaper we shall answer on the followinq questlon-
Which ooerator valued weighted shitts are subnormal’
Throughout this paver H will be a,separ;ble Hllbert space.
By an operator on Hilbert space H we mean a bounded 1i-
near transformation of 4 into igself;ﬁThe Hilbeft Qpace will be
always over the field of comrnlex numbers.
An oneratior is normal if T*T=TT*, Ry a subspace we
mean a closed linear manifold of a given Pilbert space ‘H. A
subspace I, ‘of H is -invariant under T if . Txel. whenever
xeL. If L is an invariant subspace for T, then T|L denotes
the operator T restricted to L.
An operator cting en a'Hilheft'space H is subnormal
if there exists a Hilbert space XK H, and a gormal onerator M
on X such that H is invariant under N/and 7'H=T. The space
¥ 1is called the extension space of‘H and operator N is called
a normal extension of T. The minimal extension is unique up to
unitary equivalence.
Anréperator T is hyponormal if TT*ST*T. It is easy
to show thét every hormal operator is subno;mal and also every
subnormal orerator 1s.hypqnprma1, ?he pqsitiye‘square rogt of
T*T isdenoted by !, ’ :
w_‘v—f~;"“‘1—1;.;-;xv‘ork is part of the author’s Ph;D. dissertation.

The auvther wishes to express his deen grafitudefto Dr Joseph
C. starnfli for his encouracement and gquidance which made this
work nossihle.
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l.Definition, Let H be a complex Hilbert space and let

{Ao’Al’Az"' } be a uniformly bounded sequence of bounded
1 P :
(1 ® B, H =H, be a Hilbert
=0

space of all sequences of vectors {f }m_», f e H such
n'n=6’ n
that el 2= 2 Well 2 < =
Nn=o n

The scalar product of two vectors f=(fn) and g=(gn) is

operators on H. Let H

00
defined by (f,q) = Z (9,9, -
Wm0

An operator valued weighed shift is an operator
defined on 21 by the formula T(E £y 0Epr00) =,

(o, Aofo’Alfl'AZfZ"")' The operator T has a matrix form

as follows

[-o o 0 -
a, o 0
0 p o o
o o 2, o

L -]

In tehe sequel, we are going to build up a normal
extension of an operator valued weighted shift assuming it to

be suh;normal. The normal extension B will act on space K,

(1)

containing H as a subespace and the restriction of B onto

gl e equal to T.



Since the operator T is subnormal it follows

thet * is Xxypmm hyponormal and it is natural to ask for
necepsary and sufficient conditions for ¥ to be hyponormal

with respect to weights A

2, Lemma, A weighted shift T is hyponormal if and only if
* * :
AiAi = Ai-lAi—l ’ fori= 1,2,0.--

This lemma is well known. It has been proved by Halmos[ﬂ

and wused there to find an example of a hyponorikal operator

2 such that T2 4s not hyponormal.
2tk Direct computation shows

[ n )
S, o 0 ro 0 o
- 0 ®a. o 0 AA* O
% = 14 and 1p* oo
* »
0 o A5, . 0 0 a4} .

from which the lemma is -immediate,

Iet B be a normal extension with B| H“= £, The ope-
rator T has a matrix

o & 0 o0 i
*
0 0 Al 0
o o o A
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in the sequel the vectors g}l) will be identified

with the vectors (0,0, ecee o 13(1)' Oy see ) and some

times we will use an upper index 1 , to indicate that a vector

belongs to n(l)'

. The immage of the vector (0, ¢ o « f;l)’o,;...)
under B is the vector (0, 0, +ne Agl)fgl),o,.... ) whose
components are zero except for the (j+1)3% ; hence we can write

Br(1) - A}1) f&l)

3 3
On the other hand we have

(1) (1) (1)

(1
P)n(o,...,f:,,0'000)""'3;1'fj

" The 1last equality enables a us to write

TR T A £2)

J U
(2) (1)
vhere f_ is a vector in KX orthogonal to H « The mapping
J . .
(1) (2) - oo :
fj — :j is & bounded linear operator and that mapping
B (1)
will be denoted by S j e ‘
1 ' !
We will use Sg )‘ and S interchangeably as & conini-
ence, J : .
(2) {2)
3. Lemnma, fj .-l— fj ’ forxr j¥io
12} (2) + *
£3 = . -0¥ £ Bt -a¥ ¢
Proo (fj £ ) (815 <1 Ty BT AL )
(5% x * * (2)y _
=(B £y B = A7 ) -(Aj_lfj, £,1¢7) =

. . _
= (ij,ﬁfi) - (fj, BA; 4T5) = ( Ajfj. Ayfy) -

o * .
= (£.y ., 44, 2f.) = 0.

AR TS R P |



2, | |
Pirst, we have used the fact that £y L Aj.1%5 , then the
normality of the operatos B, the fact that Ajfj.l. Aifi tor

different i, j and finally by 145 3 £, €1
2
Note that ﬂsjrj‘l)'ﬁ—.n:'j‘z)"

A, . f

3 hence rjui_l 314

i

= (13"%j - A;_lfj, B‘fj- A‘;'_lf ) =
=(#*e{1), n"‘fd‘l) (a3 lf(l), B"'fgl)) - ( B*fgl), A’;‘_lfj(l7.)+

+ (A A* f(1) ’f(l) )

j-1h31%y 0% =
1 _ (1)
(A;,Aaf;” 2y ~ady ot et ) =25 BAJ, 25 ) 4
i * (1) (1)
Wyaahyan T3 70 £ 577)

* = *

Since A5 fj-l €Hy ; and B(Aj-lfj) Ayo1dyy fye Hyy after
cancelation we have NS

) (1 (1) £1)

(2) "Sjrj )" =((Aj 3= A5 lAj %5 e 157)
Denote by ng) the closure of S.(I)Hj(l) = ¢l SsH.

d

Lemms 3 implies tha the family ijz) is an orthogonal family
of Hilbert spaces.

o
2
et a2 - @ g'2)
Jso 7
Using the sequence of operators S We can define a bounded

linear operator from H(%) into u(z) coordinatwise, namely

(Sf)j = sjfgl) “for f= (f‘l)’fil) 9 6 e o )

It is obvious that S is a linear operator, since all the
"eoordinaete" operators are linear, Using the uniférm
boundness of the sequence of operators Ai we will show
that S is & bounded operator,
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From formula (2) we have ) @
(1)p2 * 1 2
“Sf"z = ij j(l) “ “Aif n - “Aj—lfj " )
J=e

2 (L) 25p.(1) |2 = u%ei?
€9 Jajest ) 2 ew ,-z,o"fa "

where M = sup Il Aj”’ :i=o,1,2,...

4, Definition. (2) ) (2)

A = PJ+IB'H

(2)

j for j=0,1,1 . . Thus

:(i2)= Hg )_—’H;]ii) is a sequence of bounded dperators,and
2 ] (2)
noreover "A( )“ 5"3" whers Pj+1 denotes the orthogonal
J
2
projection of K onto HZ(H'])- . The operators Ag )Sj and
S(l) A (1) both H (1) int H (2) over we
341 3 o map j (] 341 and more

have folloWing

5 LEM! .
A.(2)3(1)- (2) (1)
I 3 3+1 4577, for g=o,1,2...
2
Proof: Let L =(ijil) , ij(l)),for & fixed 3,
Then (2) 4 (1) (1)
I = (rj+1 » B4, 2y )

., (D@ @) )
{f:(i)' ;(11) A Ty + Sy (1))=
(2) (l) (1) (1)

=(f1 3+1: , ) .
(2)

1

We have used formula (1) and the fact that H( )_.LH .

On the other hand , using the normality of B, invariance of
H(l) under B, and again the orthogonality of H(l) and

2)

H( we have



=T

(2) ()% (1) (1)
L= (B, aay0 s 8y 8 -
(2) (1 (1)
=(r3+1 , B(a L0250 (f ( J(1) :1) )
=( @ 225 My ()

j+l’ 3 3 3 )\b

(2 (2
Since £ wWas an arbitrary vector 4n H s the lemms
*l 3+l

is proved,

Using definition 4 we can define s bounded linear operator
A2, 2 (2)

as follows

(2) (2) 2 2)
A tj - Ag ) fj( g for j = 0,1,.0'0‘
Applying lemma 5 we will prove that the following
diagram commutes

g1 __ 8 _(2)

’ 1 (1) %(32)

Indeed, st(fo,fl’fz, rooeyg )= S(O,Aofo,Alfl’Azrz. XXy )
= (O,S A b g ’szﬁrl’ YY) ) and

235 (20, 1'1'f'c” coe )= a5 2,800,850, w )
(2) (2)

= (0,4, 'S fo,A slgpaz S,055 eee ) o

(1)
Tor short , 8 =5 and A(Y) _ 4
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)
then:

iz Ai(l)ﬂi(l) is a dense subset in H

1
i+l
.(1) Sii’iAiﬂgl) is a dense subset in Hi(i) , and

$, Lemms.

(2),(2) (2)
(2) ’A:I. Hi is a dense subset in H1+1 o

Proofs
€H (2) then th iste y' s(l)n(l)
' () ere exists 5
Let £,0 § YEH 3 th vies Hia
' , g (1) (1) "
such tha® |ly-y'll< & . Since y’¢ si+131+1 e have

1 1
7! (l)x’, where x‘€ Hi( ) + Since Xx’€H, , and

(1) (1) (1)
44 Hi is a dense set in H;,7 there existis xelinil)

such that Ix ~XU(E. where M =sup AN and x =,y

) (1) (1) (1) ) m
Then |y - Siﬂ A ‘x V¢ Wy - S, :(u + |Is 1+1 A% Stes A x|
4._52_ +Mx'= 2 (l)x“ =t
(2)
The proof of (%) is trivial since if yeHi_ﬂ then by (1),

(1)
d 1) (1)
for every €£>0 <there exists 'y 651 +1A1 Hi such that
(1) (1) (1) (2) (1) (1)
-y! =
ly =ylcg , butyésh_l i Hi i N H1 <

2
E‘i( )31(2), and {y-y'licg.
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In the sequel we need Douglas decomposition theoren,

thOrm Ao [2]-

If A and Q are bounded operators on Hilbert space H then

the following conditions are eauiv valent:
(1) AA*& %QQ* for some sonstant 9\70.

(2) A = QC for some bounded operator C.

In subsequent analysis we will use Douglas’ theorem

when A and Q are bounded operators from given rHilbert
spaces H, and H2 s respectively, into given Hilbert
space H, Then operator C in the decomposition (2) will

be an operator from Hl into H2 o

Now we will give an equivalent form of lemma 5

which we will need later in the proof of main theorem.

(1)
Ls Lemma, The equation Aj(z)sj(l) = Sgiilj together

with +the boundness of A(Z) implies the existence ot bounded
sequence ot positive numbers {xg"}euch that the following

.inequality holds

. 2 2 /) 2
* I ' LY
(5) af Chagy 7 = 18517 a2 A7 (lay) -y %)
vwhere for the brevity we use
2 (1) (1) (o (1) 2 (1) (1)
A
l 3+1l = A Ay, amd |y , = 4, 4y

for J= o0, 1,2, ..

Proofs Yaking the adjoint of the equation




w]lo—~

/
(2) (1) (1) (1) *, # & (2%
AJ S:I = s“l Aj we Bee Aj sj+1 = S:Ag ) .

* , A * (2)'*==
Set A= AfAL 3 A=85 ana A, Ce

By theorem A , the operator A decomposes as product of Q and
C if and only 4ir 3 J‘?)>/O sath that
VA JQ})QQ'%
or
(a} s,*;lsj+14jfj,rj)e a® (s; 8,%441,)

for j=o,1,2, ese
or equivalently
7 (1) r o % *
; VA - . .
(Sgendyly,s50dy Ty) € N (a5hy = 450855 )15,20)
Now, we are going to calculate left side of the last ine~
2

(1) ,
. .|
quality. Since Ajrj € J41 9 sj+lsjrj en.’iﬂ and

A';L:{-ifﬂa (1 we get

* *
(5) Sye1hyf, = BAL -4 Ayt

3 378

. Using equation (5) and the mt orthogomality of E'L) ana

H(a) and our construction we have



[ I P

.- *
L =(8 341 jfj’ Sj+lAjfj) = (Sj+1A3fj,B Ajfj)f =

= * -
(B Ajfj, 3% j ) ( &% Aj g0 B Aj 3)

= - ¥ ¥* :

= (B Ajrj' B Ajfj) (Aj Ajfj’,Aj Aa fj)

- * W

= ( Ay ghyTy Aghsfy y = (AT AAFAL,E)

( A; (|A3+1|2 - P%lg Mgty )

Thus inequality (5) & is proved, . . ,
We remark that the operator A(z) is bounded

| E
if and only if the sequence {:\5 }is bounded,
!
12 12"} 18 boundea , then the solutions Aj(z)
(1) (1) (1)

of the equation X Sj = S;}+1 Aj have norms less

than ( m)% s 8O uA (2)" 2 (4} K.

Thus the operator A(2) gorired on 5(2)
(2)442) _ ,(2) (2)
A fj Ajv fj

by the formuls

J= 0, 10e¢ 1is a bounded linear operator on 3(2‘)‘

The next step is to find out which kind of matrix

. 1
the operator B has with respect to B( ) and H’(z).

We will also prove that j(n(l) @H(Z)) < H(l) @H('Z).,
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(2)  (2)
’fj |
Using tormula (1), the noemality of B, and the

BOLGMQ (Bfk _)‘= 0, ‘fOI' j ‘ k+10

O
E”
oo

fact that h(l).J- H(z) we get

2 1) (2) (1
L= (rj( ),n B h ) =( rj‘ , B*Al‘:l)rk‘ )) =

¢ 1r-j(z), Ak(l)%Aku)fk(l) . f,(Z).sk (11) (1) km) o
for J # k+l,
On the other side we have
0 =L = (3*11(2)’ ‘*‘km) A (2)"1;(1)*& "
+(rj(2), . sk(l)fk(l)) e (2),31( ) )
Let 2(2)

be the orthogonal projection from K onto

(2) = :
H(g) and let Pj be the orthofonal projection from
K onto v

(2)
K onto the " coordinatwise" space H « Lemma 8 implies

that Pk(z)lfj(z) =0, for  k #+l.

(2)
Next we determine the projection of the vector ij
into the subspace H(l) and in particular into the.
(1)

" coordinate" subspace H

*

(nfj , Tx ) =0, for § # ki



2)  (1)%, (1) (2) 1) (1)
=(r;2), Ay T, )+ (rj ’ sk( )f
(2) (2)
F ty
d0e Lemms, (1) 2)

( X, (2)
P =
¥y 313 sj £

= (£ ) =0, for j # k.

. |
oty (2. >lfj(2)’ fj(1)

J
(2) (L)% (1) (2) (1) (1
=(;j s A4y Iy ) +(f3 , S 4 )

) = (23 ¥ )y
3 J

()% (2) (1)
= £
3 3 (sJ 3 ,fj )

and since fj is an arbitrary vector in HJ
[N

proof is complete.

Using defirition 4 and lemma lo we can write

(2)
the decomposition of the vector 3f a8  followss

] (1)% (2) (2
(6) 32‘2)=S‘)£(2)+A\)£&)+g
J J J J J 3

(1) g 5%
where 83 is a vector orthogonal to H @®HE .

1l, Lemmg, In equation (6) gj = O,
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( (1)
Broofs (st, xfk\l) ) = (ng s Ak.fk(p ) = (gj'B*(.Akkl)fk ) =0,

(2)

(1), (1) (1) e 'Y or'? ana

since A " 'f € ( 3 (Ak

k

(1) (2) ‘
g 3 is orthogonal to H @ H o Using the normality
(1 (1) (2)
and the fact s )fj = fs we have
1 1
( ) (1)*1 (1) +s ( )t ( ))

i 3 Iy

0= (B*sj. !*f )= (g 5 B(4

(L4, (1) (2) (2)
b 4 . = y
= (g;‘,.(Aj f )4 (sj,n:l ) (sj,ij )

(L%, (1)_ (1) (2) (2)

- s e 2
(gd, s, ;5 )4-(@;.,,,11d , )+“33“

Thus ug Il = o whioh implies that g =0

(2) (1)¥ (2) (2) (1) and
Set C = S, Thus O, $t H —E
J 3 J .
(2 - (2) (2)
A H H—>H e
| J i+l

Now, the operator B restricted to the subspace

(1) :
H ® H( ) has the following matrix representation
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[ . (2) ]
0 o] 0 .co 0 0
1
. 2)
AV o0 o 0 c(1 0
I
1 ! :
) ar 0 0 el2) .
1 ! 2
. ° . | d
| 0 0 0
| A(2) 0 0
°
[
2
O o K&
) 1
£ ’ ‘e . [
|
|
- ) ‘]
(2) (n)
Suppose that we have already defimed spaces H ", H 4 ¢eep X
(k) (x) . - (k)
sequences of operators Aik) H Hi-—->Hi+1 R Si(k l)z HiE_EZ___, H;
newe (k)' ('k-l)H (k=1) (k),= s (k=1) %
W] Hi closure of Si 5 and Ci 1
and moreover the operators satsty the equation
(k+1) (k) (k) (k)
S =5 A s and operator B restricted to the
i i+l 3
(1) o (2) (n)
subspace ' ' @®HE'“‘@ ., . @H has matrix of the follewing
form [ (1) (2) 7
A G 0
(2)
o a2 43
(37
0 A . -
L) » (n)
° (n)




~16e=

E) : 0 0 c(n) o o
Ac(,n 0 0 o (n) O
n) (n) 1 ,
A(n)= o A; 0 . .‘ ’ G = 0 o / c;n)
b —-J 4 . ' )

Thé above can be considered to be the inductiom hypothesis,

We can set

' (n+1)
(m)_, (a)% (n) (=
(7) 3 fj ;j-l j * j |
where t;nﬂ) is a vector orthogonal to H(l)@. . @H(n).
(K)* (k)
k)2 k (k-1)%
Here we use notations lAg )' =4, A;l and cj( e B4 )

for j = o’ l’ eee and k = 1, 2’ sesy L

The normality of B implies that “Bf(n) “2 “B*f(n) ' 2
(A(n)f(n)+ C(n) f(n) A(n)f(n)_'_ C(n)f (n))

(n+l)
. .(L(n)*f (n) v A (n);y.-f (n) o £B*D)

-3 3 3 1 Ty 3 )

A computation shows that

(n)2 2 ( )
a2, W o, el i utmdee B el 2
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or equivalently

( (IA‘n)l ‘“)l ‘n)'l 3 )) - e 2

(n)_ (n)  (n+1)
If we set SJ fj = fj we get

ls(,') l 2.= IA (n),la ‘+ Ic.(n)lz l j (n)x

So of necessity we have condition

(n)]2 (n)|2 (02
‘Ai , +,C3 I ' l = 0
(m) '
From (7) We se that B f, R Aji;)*éjkn) . sj(n)fkn) here

(n) (1) 2
‘n)rj 4 = @H,( ® . . . o5,

(n+1) : .
Let Hj be the closure of sgn)Hd(n) . ant set

H(n+l) (m+1)

oC
= @ H
j=o
Now we have the same lemmas which had been proved ftor n=1,

(n+1) (n+1)

J2s Lemma, (fi ’ fj )= 0 for 143,

Broofs (n+l) (n+1) s
CONE A si(n>fi(n>’s(n)fj(n)
3

* (n)_ A (n)*}(n) (n) (n)

= (B f
Bt =4, ESRE fj ) =

Bakf(n). B*f(n) * (n) (a)x (n)

* (n) (n) (ng
fj = ( i ’ 3 )=(» 4 'Ai-l t j )

= (82, /8,
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(n) (n) (n) (n) (n)%(n) (n)¢ (n)x (n)

= (B £, 'y BE T W T R

=0, by very definition ot all the subspaces,

1 (n+1) (n+1)
Now we define an operaztor A(n+ s Hj — Hj+1
(n+l) (n+l) (n+1) (n+1)
by +the formula A f j = Pj a ¥ , where

J
(n+1) (n+l)
PJ 1 is the orthogonal progection of K onto Hj 1
+

(n), (™) (n+1) (n)
The operators sj+1A;j and A;j Sj both nap the space

(n) (n+l)
H into H » and moreover the folowing lemma is true

3 j+1

13, L 1 (n) s
A3 Lemmas A;m- )Sgn) i} sgni Aj | for 3= 0,1,.e o
+

equivalently
(f(n+l) Br(n+1)) (f(n+1) (n) (m),(n)

1"y 3 Spahy

ErooL: (n+1) (n) (n+1) (n)* (n) (n)f(n)
Set ILe (Brj 1 0 B8, )= (Bfy, s £y A, 1
=(f(n+1)’ B‘(sgn 1) (n )))+( (¥+1) 3%4 (n) gn)))

i J 3
n-l -
(n-1)#(n) (n=l) and 3 H( )é H(n 1)®H(n)
3 .fj & Hj
the first number is zero, so we have
(n+1)  (n)x (n) () (n) (n) (n)

L = A A T S 4,
(1 Py AT s s )

)

Since S !

and thus
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(n+1) .s(n) (n)r(n)
L= (fj+l ’ j+1A3 j
Using the normslity of B we have
w (n¥l) _x (m) oy (n) () (n) (n)
L =(B fj s B fj }=(B fj+1 ’ (Aj_l + sj )fj

(n+1) (n)*f(n>)) . f(n+1)', Bs(n)r(n)) ]

= T Blay, 341 37

J+1
(n+1) (n+1) (m) (m) (n+l) (n+1)s (n)
=0 1 Ea ]Sj fj ) = Tael Ay 3

(n+1)
The sequence of operators A is uniformly bounded in

J (n+l) (n+l) (n+1)
norm ( namely by 1B ) and +the operator 4 $sH — 5 H

- (n+1)
defined coordinatewise by A(n+l)fj(n+1) = A‘n+l)f
: J J

is bounded. Now, we againare going to give an equivalent

of lemma 13 which we will need later in proving the ﬁain theorenm.

b Temna, The equation
(a+1) (n) (n) (n)
(9) 4y 7847 = S50t

together with boundness of ,(n+l) implies the existence of

& bounded sequence of posgitive numbers fﬁ?@such that the
following inequality is true
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(n){2
j+l

n}¥

([A c(n) lz _‘Agn)*‘Z )A(n)

J+1

el

(10) &
(n) | (n)]2 (n)) 2 (n)*
éJ\j (‘Ajnl +‘cj ‘ ;|-1|

for J=0ylyeses

Proof: The proof of this lemma is similar to the proof of
lemna 7. By the same  arguments as in lemma 7 we have

a bounded e sequence of positive real numbers such that

ah(a)x (n) (n) (n)  (a) (n)  _(ak (2) (n) (p)
in Spl Spa Ay Ty Ty ) Ay sy e e

in order to compute the left side L of the above‘inequa.lity
we first use definition (7) , and obtain

‘“s(n) (n) (n) (n5 (n) ( ) *kn) (n)
g1hy 3 (53414 1BTAy £y )-

(n) (n) (n) ,(n)x (n) (n) ¥,(n) (n) (n)#,(n) x,(n) (n) =
'(Sj+1;) £y 7, Ay Ay )=(B Ay £y -Ay AL GBTASTE )=
(n+1) (n)(n) (m+1) (B ) (n) (n) (n) (n) (a) (m) (n))
O R R T AR T B 4173

(m) () () (a) (=) () (@) (md i) (m) () (m)
- (4 £ A, . )+(c. A A, £ ,a %
3N E F I e R e

The last member of the prevous relation is egqual to O,

S0 we have (n) (n)
X ( ) (n)|2_[, B3 2, (m)e" 7 1 2
NG dA:l lcjill -l g T B
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On the other side we have
”S(n)t tn)“ 2 _ (s(n)f (n), MEIREY
i 3 I3 34

QP BT - e,

thus inequality (7) is proved,

(n) (n) (»)
5. Lemmgs (1) If oy 'Hy ' is demse in M.l then

A§n+1)H;n+l) is dense in hgf;.l)

(n)

n
(n) =0, then 5 =0 , for p>3 .
0 P °

(2) If By :

o0ofs: (1) If m=1, this lemma coincides with lemma 6

and the proof is exactly the same as that of lemma 6.
A(n+1) (n) (n) (n)

(n)
(2) It Sjo = 0, then 3o i, = Sjo Ajo hencs

(n) ) (n) (n) (n+1)
Sj Ay =0, and since A Hy "is dense in H we
o VYo o %o \jo-l-l
get S (n) = 00
I+l

The next step is to find the matrix of operator B

with respest to H(l)@ H(Z) ® eene @H(n+1). Yo have the
following lemmas,
48,  Lemms, (m+1) {n+l) »

(3 r s £ ) =0, for J ¢ k+1,

k J



P
- -

(1) L ) (gD () ) ()

Brooft L =(fj ) fj
k k

)

(n+1) (n)* (n) (n)  (n+l) (n) (n)
= t y b 4 £ in) f ‘ = 0
g ; Ak IR 37 Sen k )

Temna 13 had been used here.

On the other hand ,

_ %, (1) (n) (n+l) (n)#*(n)
0=1= (7L, , B*fk )8 = (B*rj Y VR

(ne1) (n) (n) 1 1
+ (fj ,BSy rk ) = f§n+ )’ Bfk(m- ))

(n+l) (n)

11, Lemuae ( BL ,fk)=0,ror3¥k.

(n+l)  (n) (n+l)  , (n)
* Broof: .(ij y Iy ) = (fj , BYL, ) =
(n+l) (n)*i,(n) (n) (n) (n+l) (n+l)
. ,Ak—l X + Sk fk = (f . ,fk
, J J
and the last number is zero , by lemma 12 if J # k

. (a1 *\n"'l)
\n)Br (n+1) (n)

18, Lemma, Ly 3 =855 %
(n+l) )
( kn+1) n ) = (r , )*rj(n)) -
RCEY ‘n)*:(n’ Jr(n+1) (n) (n)

3 » ’Aj...]_ j + j ,Sj fj ) =
x (n+l) (n)
(2% PSS
I 3 3
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(n+l)

From lemmas 16-18 and tne aerinition of A4 e

can write a decomposition or the vecctor Bf (m+1) a3 follows:
(2+1) (n+l) (n)x, (n+l)
320, f( + 5 4 +g
3 3 J i3 3

( " (n+l)
where g;i is a vector orthogonal to H @ .. . @H

19, Lemma, gj = 0, in the above decomposition.

(n), (n) (n) (n-l)’f(n))
Eroofs (P&, 30,77) = (Bgyoay £ s 5 5

- xalmg ™y
(sj,l(kj :tj =0

v (n) (n) (n)
The 1last follows from the facts Aj t €H ,

(n) (n) (n) _ (n+l) (1) 1
B(j ] )e B ®H and ng-H @ @H(n+).
-Using the normality of B we have
(n)e () - (n) (n)

‘ £

(B, o (a%1) ¢
- B(A n (n+l)
(E ’ j -1 j + Aj fj ) 5(83,14’.;“’1)‘)

0=( B*g ,_n“!(n)) =( gj'B( A D=

= g(n)x, (n+1) (n+l) (n+l) i \
(g 'S;) 5 + 4y rj + 83) “53"
which implies that gj =0

Fronm the above results we can write the matrix of B

with respect to H(l)@ﬂ(2)® ¢« o o @H(MU as follows:
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@ T
0 al2) G(3)
' (3)
0 o] A .
G(1\4-1)
_- ‘ ‘(ni-l) J
where '
(o 0 ~,
‘,Ac(,n)\ o
A(n) (2)
0 A .
and r ] 1
§ (na)
(n) (n)
G = 0] Cl
_J ¢ ‘.-I
Kote that . A(n): n(n)——*ﬂ(n)‘ and G(n): H(n)\;n(n-l)

and im particular a(1) =P

*
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20.Thaorem. Let T be an operator valued weighted shift

(1)]* |
with weights [A tzo » wheTe u&iﬁ <=M, l'hen’,;. the

operator T is subnormal if and only 4if

(n)] 2 (-1)2 ()* |
D ] * el ;_‘12 a0

(II) there exists assequence of positive real numbers

)
{A" } such that the following inequality holds -

(n)x
Ajn ([Af’:]). ' 2 (n) l (n)a12 ) (n)

eAgn)(]A(n)lz . (cgn)) 2 L«;’_‘i*[z)"

-

An
(III) there exists a constant M such that HA J()" <M

where c(n)_,: (,X?)la . (rcgn-l))Z _ ‘ (n)ﬁ 2 1/2

j )
A (n+1)
j is a solution of the equation
(n) (n) (n)
11 XC = G A
(11) j 3 3
Proof: The necessity of condition (I) had been exhibited

in inequalit® (8) and condition (II) is lemma 14.
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Condition lIII)' follows from the Vboundness of the operator
B which is a normal extension of T. Lemma 13 shows that

aln+1) satisfies equation (11).

Now we will prove that .conditions (I),(II), and (III) are also
sufficient for subnormality of the .operat or T.

Since (I) holde, the operator L(n)lz +(C gn-l) 2 h(n)*‘z

is positive, therefore has a positive square root, and

c(n).

3
K) ,
Suppose we have operators A, s K =1,2,... 1,

we denote that root by

. 1l
satisfying (11), and denote by Agm' ) the solution

a ‘
of the equation XG( ) cgf{‘?)’ which exists by condition

(11) and Douglas” theorem, whose application was showm in lemma 14,

(1) (v
set BV = & B Lu =5 2. & 5 wa
j=o 3 J =0 3}
A o0 (n)
e @

Now we definé am operator B on H s such that B will

be mormal and B|E‘Y) = 1, we win explicitely weit -
dowmn the matrix form of on H as followas:

[—(1) 2,
0 ‘(2) 0(3)




where - -
° o o ]
A2 5 0
(2) o 4
1
d
= [ (n-1) ]
C 0
o
G(n) - 0 c:(L.-l) 0
(n~1)
0 02 e o
- ®

n
Phus .each G( ):I.s selfadjoint.

Note that 4'27; ala)_, y(n) ana ¢(®) , g2 p(a-1)

Taking adjoint of the matrix B we have

&(1) o o
G(z) A(2) o
o T3 (39
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Direct computations show

%) al10¥%(2) o
62,1 (6(2))2,,(20%,(2) NE2aAt)
BB = (
o - 6(3’A(2) (G 3) 2 (3)1(3) .
= o]
i&(l)Amﬁ (c{2))2 g% o -~
(2) (2) (2)(2% (3)2  (3) (3%
BBe (A ¢ A A +(6¢ ) G A
o 4(3),(3) . .

We will show that B¥B = BB*’by showing that all corresponding

entries are equal, riration the lower diagonal we will show that
‘(n)G(n) = G(n)A(n-l) for n = 1,2, . Nultiplying the terms

of this equation we see thal it is equivalent to the equations
(n)(n-l) (n-1) (n-17
J j j+l j 4

(n)
is true since A

for j= 0,1, o oe but the last equlity

was a solution of equatiom (11) by definition,.

Now, for the diagonal entries we have to show
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(12) alm) (%, (e{n+1)yz | 4(n) p()% (g(n)y2 » £or =1,2,...

The sbove equations are equivalent to ‘the equations

(n) (n)»x , (n) 2 (»)x (n) (n-1) .2
‘j—l Aj-l +(cj ) = .LJ AJ + (cj ) f;r J= 09lye0e
and the latter is exactly the definitiom of c(; .

Finally, we show that B is bounded., Let

$ef, that 1s £u ( £1),2(2) [ . ). Then we have
32 = (a{}(2), 6{2)p(2) ) ((2)g(2) | ¢33, [, .

Using (III) we get

2
ez g o 0 | (xe1) (o) 2

- g CHCE I, [+ 1))| "r(k+1)” )2

=g kOl |y
i 2o f 2 epey

thus ﬂﬂléﬂ which implies the boundness of the operator
3.

21, Corollary. Let T be a subnormal operator valued

o
Weighted shirt
g with positive invertible weights {Ai} 1=0 .
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104y, =43+l them 4 =4

for all k=
% 30 * JO .

b
Broogs write u(1) « ;i@o Hj(l' s Where Hgl) =H and

;(%) s A, Since the Agl) are invertible we see that

1 1
the spaces *g )Hg ) are dense in( in fact equal to) the

(1) a lying 1 6 % A(Z)H(Z)
j"'l : an applying lemma we ge 3 j

is dense in H

spaces H

541 for each J,
- (1 1)
Since the Agl) are selfgdjoint ; Ago)z A§°+1
2
implies that sJ°+1 = ((Ajo+1) - (Ajo )2 Y12 = o,

By lemma 5 we have

(1) (1)

(2) s(1)
3,2 A 41

A = 0
3°+1 jo

s

+1

Using the mvertibillty ot *i(l) we cono}uﬂe that
o

2 2 2
s’°+2 = 03 which implies (‘%*2 ) -(Ajo_'_l) = (A"’o) and

4 square root we have A’o"'z - ‘30‘ . mﬂ.s proof could be

continued. Therefore Ak - A’o § for all k”’o'

22s EXgnple, Using corollary 21 we will give an example

of hyponormal opetator T, which i not subnormal and moreover
all powers R 9 for n 71 are hyponormal ( see Halmos[5]vroblem

160 and Stamprii [9].
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Let H be two dimensional Hilbert space and let T be

an operator valued weighted shift with weights

1/2 0 2 0
3, = |Y A . [1 -y, A = for 1% 3,
o 1/2 1 0 1 2 a o 2

Ther T is hyponormal by lemma 2 but it is mot subnormal
by corollary 21, An easy computatiom show that

(/4)1 o o o

(o] I 0 o
!uzzz.v 0 41 ©

0o 41 ,

and — -—

#r2a o o 4w

L o

Therefore Tz. is hyponormal. In the same mamner it can be
shown that *® is hyponormal operator for every matural & .
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CYBHOPNAJIHOCT HA ONEPATOPCKO TEXVWHCKUTE WMOTOBU

HoBak liBaHOBCKH:

Bo opaa paGoTa ce HajneHM NOTPeGHUTE ¥ HOBOJINMTE YCIOBM 3a H&
eneH ONeparopcko TeXMHCKU Hudr e cyOHopumaneH.0BOj TPyA NMpeTCTABYBa reHepa-
nn3aunja Ha peaynraror ox Stawpfll kame wro e pasrmenysan mudT co TemUHM~

-CKanapu.



