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CONDITIONS FOR EXISTENCE QUASI-PERIODIC SOLUTIONS
WITH A CONSTANT QUASI-PERIOD FOR DIFFERENTIAL
EQUATION OF FOURTH ORDER

JORDANKA MITEVSKA AND MARIJA KUJUMDZIEVA NIKOLOSKA

Abstract. In this paper, using the same reducible method as in the papers
[11, [2], [3] and [4]. we give some conditions for existence of quasi-periodic
solution with a constant quasi-period for the ordinary differential equation of
fourth order (2.1) and find this solution.

1. INTRODUCTION

In this part we give some previous results ([2],[3]) which will be needed in the
following part of this paper.

Definition 1.1. We say that y = (x), € I C D, C R is a quasi-periodic
function (QPF) if there are a function w = w(zx) and a coefficient X\ = A(w) (A >
0, A # 1) such that the relation

plr+w)=Ap(z), z,2+wel

is satisfied. The function w(z) is called a quasi-period (QP) and X is said to be a
quasi-periodic coefficient (QPC) of the function p(x).

Let the equation
y" +a(z)y" +b(x)y + c(x)y = d(z) (1.1)

where a(z),b(x),c(x),d(x) are three times differentiable functions at
ICD,NDyNnD.N...ND,. be given. The following theorem holds.

Theorem 1.1. [3] Let the coefficients a(x),b(x), c(z),d(z) in (1.1) be QPF with a
constant QP W and QPC pu,v.n,< respectively, such that p # v, v #n,u#n, 1 #

d(z
SGVFES W, v, 1,5 # A Equation (1.1) has QPS y = I("% with QP @ and QPC

XN= —:,—, if the relations

A" p-v [(d\'
(E) +,U“1‘<;) -b=0, and (1.2)
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(8 -5 () e =

are satisfied.
Let the equation
y" + f(@)y + g(x)y = h(z) (1.4)

where f(z), g(z), h(z) are two times differentiable functions at I C DyND,NDyN
Dy, be given. The following theorem holds.

Theorem 1.2. [2] Let the coefficients f(z),g(x),h(z) in (1.4) be QPF with a
constant QP w and QPC u,v,n respectively, such that p # v, v #n, p#n, and
h(z)

w#EXN v#XN n#X v#L Then the equation (1.4) has QPS y = ) with
QP @ and QPC \ = g , if the relation

(&) + () r=0 G=1@) 9=st0) n=t) @9

1s satisfied.
Remark 1.1. We note that the Definition 1.1. for quasi-periodicity of functions,
as well as the reducible method to a given differential equation with respect to the
quasi-periodic solution, have been introduced by the authors. The authors have
not found this definition and the applied reducible method in any available liter-

ature. Both of them have already been used in authors’ previous papers [1],[2],[3]
and [4].

2. MAIN RESULTS
Let
L(z) = y™ + a(2)y" + b(z)y" + c(z)y' + d(z)y — e(z) =0 (2.1)

be a given differential equation where a(z),b(z),c(z),d(z),e(z), are four times
differentiable functions on I C D,N Dy N---N D, N D,,.

Lemma 2.1. Ify = y(x) is a quasi-periodic solution (QPS) for the eq.(2.1) with
a constant QP w and QPC M(X > 0,\ # 1), then the eq.(2.1) is reduced to the
linear differentail equation of third order with respect to QPS y = y(z):

(a(t) — a(@)) y"' (@) + (b(t) = b(@)) y" (=) + (c(t) — c(2)) y' () +

) (2.2)
+ (d(t) — d(z)) y(2) = 16 — €(@)/t=a+w
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Proof. By the system

(L(z) =0
t=z+4+w
L(t)=0

y(t) = Ay(z)
d* (k)
\Eﬁy(t):)\y (m)i k:1a27374

we can eliminate y*(t), ¥ (z), y(t) and so we obtain the eq.(2.2). O

(2.3)

Theorem 2.1. Let the eq.(2.1) have QPS with a constant QP w and QPC A
(A >0, #1). If the coefficients a(z), b(z), c(z),d(z),e(x) for (2.1) are QPF with
the same QP @ and QPC A1, X2, A3, Ag, A5 respectively, then the eq.(2.1) is reduced
to the equation

O = Da@)y” + O — Db(@)y" + (s = De(@)y’ + (s — Dd(@)y = %“5 _ Xefe).

(2.4)
Proof. Substituting in (2.2) a(t) = Ma(z), b(t) = Ab(z), c(t) = Asc(z),
d(t) = M\d(z), e(t) = Ase(z)/t=z+z, Wwe obtain (2.4). a

Theorem 2.2. Let the coefficients a = a(z),b = b(z),c = ¢(z),d = d(z),e = e(z)
for the eq.(2.1) be QPF with the same constant QP @ and QPC Ai, X2, Az, A4, A5
respectively, such that \y # 1, Ao = A1, A3 = 1, Ay # X5. Then, the eq.(2.1) has

QPS y = 2 if the relations
a-(g)"#b'(g)":o (2.5)
(5)" e (5) = oo

Proof. Let y = y(z) be QPS for the eq.(2.1) with QP @ and QPC X # X5. Using
the Theorem 2.1. we reduce the eq.(2.1) to the equation of third order (2.4). If
A1 # 1 we can write the eq.(2.4) in the form

are satisfied.

y"+By'+Cy' +Dy=E (2.7)
where
)\2—1 b )\3—1 (64 )\4—1 d )\5—)\ e
B-——- —,C: ",D: —’E: - -
)\1—1 Q )\1—1 a )\1—1 a )\(/\1-—1) a
and such that
)\2 >\d
B(zx +w) = —=B(z), C(z+w)=—=C(z),
A1 A1
A4 As
D(e +w) = $*D(@), B +w) = E(@)
1 1
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Since B,C, D, E are QPF, the eq.(2.7) has QPS y = g if B,C, D, E satisfy the

(2 (3 (39 (5) -
(5 (5) e (5) -

O = A1) (g —1)-b- (3) + s —A)As—1) ¢ (2) —0 (28

relations [3]:

i.e.

e

M—1)-a- (2) +(2—1)-b- (;l) +(a—1)-c- (2) —0 (29

e . . .
Since y = — is also a solution for the eq.(2.1) it has to satisfy this one, from where
we have the relation

e\ w e\ e\ e\’
() +o- @)+ () +e-(5) =0 (2.10)
From (2.8) follows: if Ay = A; then A3 = 1 (it means ¢ = ¢(z) is a periodic
function) or Az = A;.
Let Ao = A; and A3 = 1. Then, from (2.9) and (2.10), we obtain the relations
(2.5) and (2.6).

e mn e n
Let Ay = A and A3 = A;. Since A\ # 1, from (2.9) follows a- (3) +b- (8) -+

! w
c- (5) = 0, but then, from (2.10), we obtain (—Z—) = 0, what means that the
unique QPS for the eq.(2.1) is y = 0. a

Corrolary 2.1. The equation y*¥ + c(x)y' + d(z)y = e(x) has the same QPS as
the eq.(2.1).

Proof. By the condition (2.5) follows that if a(z) = 0 then b(z) = 0, or vice versa,
and ¢(z) does not depend on a(z) and b(x). O

) 4t
Example 2.1. The equation y* +e%%y"' +e%* (tgz— 1)y"+tg g+ Ty "+e %y =sinz

satisfies the conditions of the Theorem 2.2., so it has QPS y = —

with QP w = 27 and QPC X\ = 2. According to the Corollary 2. 1 the equation

. 4tgx
g + ,@T{L—ly’ + e %y = sinz also has QPS y = e®sinz.

sinz

= e*sinzx

Theorem 2.3. Let the coefficients a = a(z), b = b(z), ¢ = ¢(z), d = d(z),
e = e(x) for the eq.(2.1) be QPF with the same constant QP @ and QPC
A1, A2, Az, Ag, A5 respectively. Then
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1°If M =1, My #1, A3 = Xo, My #1, Ay # X2 then the eq.(2.1) has QPSy = 2
when the relations
e 1 e ¥
b- (3) ot (3) =0 (2.11)
e\ v e\
(3) ta- (E) =0 (2.12)

are satisfied.
e
2° If \1 =1, Ao # A1, A3 = 1, then the eq.(2.1) has QPSy = p when the relations

(2.13)

are satisfied.

Proof. Let y = y(z) be QPS for the eq.(2.1) with QP @ and QPC X\ # Xs. If
A1 = 1 (it means a(z) is a periodic function), using the Theorem 2.1., we can
reduce the eq. (2.1) to the equation of second order

1
e = D)by" + (A3 = 1)ey' + (Mg — 1)dy = X(/\5 - Ae.

If A2 # 1, we can write the last equation in the form

y'+fy +gy=nh (2.14)
where
f__/\g—l E _/\4—1 g o )\5—-)\ €
R A TR P T -1 F
: . _ A3 A4 As
Since f, g, h are QPF with QP & and QPC Ay = n Ag = o Ap = . the
2 2 2

eq.(2.14) can be reduced to the equation [2]:
A3 A4 1 /X
w2 =] ! — ] y=={=2 -\ -
(Az )fy+(/\2 )gy )\<)\2 )h
ie.

; 1
()\3 — /\2)(/\3 — 1)cy + ()\4 — )\2)(A4 == 1)dy = ﬁ()\s = /\Ag)(/\g, = )\)6 (215)
From (2.15) follows: if (A3 — A2)(A3 — 1) = 0 then

1 (=4
M =X)Ng —Dd -y = 7\5()\5 — AX2)(As — A)e. Since for A = —ii follows
4
As — AX2)(As — 1
/\(2(5/\4 = ;2))(( /\54 = 1)) = 1, we obtain the solution y = 2. Asy = 2 is a solu-

tion for (2.14) and (2.1), the both of the relations

(A2—1)-b-(§)"+(xs-1)-c-(2)':0, (2.16)

() o @)@ v -0 e
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have to be satisfied. Now we have:

1°If Ay = A3 # 1 (i.e. b and c are QPF), then from (2.16) and (2.17) follows the
relations (2.11) and (2.12).

20 If A\3 = 1 (i.e. ¢ is a periodic function), since Ay # 1, from (2.16) and (2.17)
follows the relations (2.13). a

Corrolary 2.2. The equation y* + ay" + d(z)y = e(z) has the same QPS as the
eq.(2.1).

Proof. By the condition (2.11) follows that if b(z) = 0 then ¢(z) = 0, or vice versa,
and a(z) does not depend on b(z) and ¢(z). O

Example 2.2. The equation

iv 2 2 z, I 2@mtgz i T, _ 2T
Y 1+tgzy +e'y +1—tgzy +e'y=ecosx
, . . e cosr
satisfies the conditions of the Theorem 2.3., so it has QPS y = T e e”cosx
4T
with QP w = 27 and QPC A\ = GTW = €>™. According to the Corollary 2.2. the
e

m

equation 3™ — y" + e%y = e® cos x also has QPS y = e” cos z.

1+ tgz

Theorem 2.4. Let the coefficients a = a(z), b = b(z), ¢ = ¢(z), d = d(z),
e = e(x) for the eq.(2.1) be QPF with the same constant QP @ and QPC A1, X,
A3, A4, A5 respectively such that \y = Ao = 1 (i.e. a(x) and b(z) are periodic
functions with a period @) and A3 # 1. Then y = 2 is QPS for eq.(2.1) if the
relations

(2.18)

(5)" +e-(5)" 0 (3)" =0

Proof. Tt can be proved in a similar manner as the previous theorems, reducing
the eq. (2.1) to the equation of first order and analyzing this one [1]. O

are satisfied.

Example 2.3. The equation y™ +sinz - y"' + 2(sinz — 2)y" + e*y = e~ * satisfies
the conditions of the Theorem 2.4. and has QPS y = e ™27,

Theorem 2.5. Let the coefficients a = a(z), b = b(z), ¢ = c(z), d = d(z),
e = e(x) for the eq.(2.1) be QPF with the same constant QP @ and QPC )y, s,
A3, A1, As respectively, such thar Ay = Xy = A3 =1 (i.e. a(z), b(z) and c(z) are
periodic functions with a period @) and Ay # 1. Then y = = is QPS for eq.(2.1)

€
. ) d
if the relation

(5" o ()0 (3) v (5 =0

is satisfied.
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Proof. It can be proved using Theorem 2.1. and reducing the eq.(2.1) to the
algebraic equation of first order. O
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