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REITERATIVE (mn)-DISTRIBUTIONAL CHAOS FOR
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Abstract. This paper intends to be a heuristical study. Let (mn)

be an increasing sequence in [1,∞) satisfying lim infn→∞
mn
n

> 0,

λ ∈ (0, 1], s ∈ {0, 1−, 1+, 2−} and i ∈ N ∩ [1, 20]. We introduce and
analyze the concepts of reiterative (mn, X̃)-distributional chaos of type
s, reiterative (λ, X̃)-distributional chaos of type s, reiterative [X̃,mn, i]-
distributional chaos and reiterative [X̃, λ, i]-distributional chaos for gen-
eral sequences of binary relations over metric spaces.

1. Introduction and Preliminaries

Suppose, for the time being, that X is a separable Fréchet space. A
linear operator T on X is said to be hypercyclic iff there exists an element
x ∈ D∞(T ) ≡

⋂
n∈ND(Tn) whose orbit {Tnx : n ∈ N0} is dense in X; T is

said to be topologically transitive, resp. topologically mixing, iff for every
pair of open non-empty subsets U, V of X, there exists n0 ∈ N such that
Tn0(U) ∩ V 6= ∅, resp. there exists n0 ∈ N such that, for every n ∈ N with
n ≥ n0, T

n(U) ∩ V 6= ∅. A linear operator T on X is said to be chaotic
iff it is topologically transitive and the set of periodic points of T, defined
by {x ∈ D∞(T ) : (∃n ∈ N)Tnx = x}, is dense in X. The basic facts about
topological dynamics of linear continuous operators in Banach and Fréchet
spaces can be obtained by consulting the monographs [1] by F. Bayart, E.
Matheron and [11] by K.-G. Grosse-Erdmann, A. Peris.

2010 Mathematics Subject Classification. Primary: 47A06 Secondary: 47A16.
Key words and phrases. reiterative (mn)-distributional chaos of type s, reiterative

λ-distributional chaos of type s, reiterative [X̃,mn, i]-distributional chaos, reiterative
[X̃, λ, i]-distributional chaos, binary relations.

5



6 M. KOSTIĆ AND D. VELINOV

In a joint research studies with J. A. Conejero, C.-C. Chen and M.
Murillo-Arcila [8]-[9], the first named author has recently investigated a
great deal of topologically dynamical properties for multivalued linear op-
erators between Fréchet spaces and general binary relations between topo-
logical spaces. Concerning similar researches within the field of topological
dynamics, one may refer e.g. to the recent papers [14]-[16]. Mention should
be also made of the papers [20] by R. A. Martínez-Avendano, [21] by P.
Namayanja, and [12]-[13], written in collaboration of D. Goncalves with D.
Royer and B. B. Uggioni.

On the other hand, the notions of (mn)-distributional chaos and λ-
distributional chaos have been recently analyzed in [19], for linear con-
tinuous operators and their sequences in Fréchet spaces, while the notion
of distributional chaos of type s for orbits of a linear continuous operator
acting on a Banach space, where s ∈ {1, 2, 21

2 , 3}, has been analyzed by N.
C. Bernardes Jr. et al in [4]. Concerning multivalued non-linear setting, it
should be noted that various notions of reiterative distributional chaos and
Li-Yorke chaos have been recently examined in [16], for general sequences
of binary relations in metric spaces.

The main aim of this paper is to propose a great deal of new unification
concepts extending the notions considered in the above-mentioned papers.
Let X̃ be a non-empty subset of the pivot space X. We analyze the no-
tions of reiterative (mn, X̃)-distributional chaos of type s, reiterative (λ, X̃)-
distributional chaos of type s, reiterative [X̃,mn, i]-distributional chaos and
reiterative [X̃, λ, i]-distributional chaos for general sequences of binary rela-
tions in metric spaces; here, (mn) is an increasing sequence in [1,∞) satis-
fying lim infn→∞

mn
n > 0, λ ∈ (0, 1], s ∈ {0, 1−, 1+, 2−} and i ∈ N∩ [1, 20].

The organization of material is briefly described as follows. In Subsec-
tion 1.1 and Subsection 1.2, we remind ourselves of the basic definitions
and results about binary relations, multivalued linear operators and various
types of lower and upper (Banach) mn-densities. The main aim of Section 2
is to introduce and analyze reiterative (mn, X̃)-distributional chaos of type
s and reiterative (λ, X̃)-distributional chaos of type s for binary relations
in metric spaces; in Subsection 1.1, we analyze the corresponding notion
for sequences of multivalued linear operators in Fréchet spaces. Section 3
is devoted to the study of reiterative [X̃,mn, i]-distributional chaos, where
i ∈ N∩[1, 20]. It is very important to stress that any notion of distributional
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chaos considered in the papers [2]-[4], [6], [7], [16] and [19] is a particular
case of reiterative [X̃,mn, i]-distributional chaos for some i ∈ N ∩ [1, 20] or
(mn, X̃)-distributional chaos of type s for some s ∈ {0, 1−, 1+, 2−} (be-
cause of a great number of the notions of (reiterative) distribitional chaos
recently examined, we have been forced to slightly exchanged the termi-
nology). We state several simple statements, mostly without giving cor-
responding proofs, and propose an open problem. Conclusions and final
remarks section is included at the end of paper.

Here and herafter, it will be always assumed that (X, d) and (Y, dY )

are metric spaces. For any set D = {dn : n ∈ N}, where (dn)n∈N is a
strictly increasing sequence of positive integers, we define its complement
Dc := N \D and difference set {en := dn+1 − dn|n ∈ N}. Let us recall that
an infinite subset A of N is said to be syndetic, or relatively dense, iff its
difference set is bounded. For any s ∈ R, we define bsc := sup{l ∈ Z : s ≥ l}.

1.1. Binary relations and multivalued linear operators. Let X, Y, Z
and T be given non-empty sets. A binary relation between X into Y is any
subset ρ ⊆ X × Y. If ρ ⊆ X × Y and σ ⊆ Z × T with Y ∩ Z 6= ∅, then we
define ρ−1 ⊆ Y ×X and σ◦ρ ⊆ X×T by ρ−1 := {(y, x) ∈ Y ×X : (x, y) ∈ ρ}
and
σ ◦ ρ :=

{
(x, t) ∈ X × T : ∃y ∈ Y ∩ Z such that (x, y) ∈ ρ and (y, t) ∈ σ

}
,

respectively. Domain and range of ρ are introduced by D(ρ) := {x ∈ X :

∃y ∈ Y such that (x, y) ∈ ρ} and R(ρ) := {y ∈ Y : ∃x ∈ X such that
(x, y) ∈ ρ}, respectively; ρ(x) := {y ∈ Y : (x, y) ∈ ρ} (x ∈ X), x ρ y ⇔
(x, y) ∈ ρ. If ρ is a binary relation on X and n ∈ N, then we define ρn

inductively; ρ−n := (ρn)−1 and ρ0 := {(x, x) : x ∈ X}. Put D∞(ρ) :=⋂
n∈ND(ρn), ρ(X ′) := {y : y ∈ ρ(x) for some x ∈ X ′} (X ′ ⊆ X).
Let X and Y be two Fréchet spaces over the same field of scalars K. For

any mapping A : X → P (Y ) we define Ǎ := {(x, y) : x ∈ D(A), y ∈ Ax}.
Then A is a multivalued linear operator (MLO) iff the associated binary
relation Ǎ is a linear relation in X × Y, i.e., iff Ǎ is a linear subspace of
X × Y. In our work, we will identify A and its associated linear relation Ǎ,
so that the notion of D(A), which is a linear subspace of X, as well as the
sets R(A) and D∞(A) are clear. For more details about multivalued linear
operators, we refer the reader to the monograph [10] by R. Cross.
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1.2. Lower and upper densities. In this subsection, we recall the basic
things about lower and upper densities that will be necessary for our further
work. For more details about the subject, the reader may consult [17] and
references cited therein.

Let A ⊆ N be non-empty. The lower density of A, denoted by d(A), is
defined by

d(A) := lim inf
n→∞

|A ∩ [1, n]|
n

,

and the upper density of A, denoted by d(A), is defined by

d(A) := lim sup
n→∞

|A ∩ [1, n]|
n

.

Further on, the lower Banach density of A, denoted by Bd(A), is defined
by

Bd(A) := lim
s→+∞

lim inf
n→∞

|A ∩ [n+ 1, n+ s]|
s

and the (upper) Banach density of A, denoted by Bd(A), is defined by

Bd(A) := lim
s→+∞

lim sup
n→∞

|A ∩ [n+ 1, n+ s]|
s

.

It is well known that the limits appearing in definitions of Bd(A) and Bd(A)

exist as s tends to +∞, as well as that

0 ≤ Bd(A) ≤ d(A) ≤ d(A) ≤ Bd(A) ≤ 1, (1.1)

d(A) + d(Ac) = 1 and Bd(A) +Bd(Ac) = 1. (1.2)

We will use the following notions of lower and upper densities for a subset
A ⊆ N :

Definition 1.1. Let q ∈ [1,∞), and let (mn) be an increasing sequence in
[1,∞). Then:

(i) The lower q-density of A, denoted by dq(A), is defined through:

dq(A) := lim inf
n→∞

|A ∩ [1, nq]|
n

.

(ii) The upper q-density of A, denoted by dq(A), is defined through:

dq(A) := lim sup
n→∞

|A ∩ [1, nq]|
n

.
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(iii) The lower (mn)-density of A, denoted by dmn
(A), is defined through:

dmn
(A) := lim inf

n→∞

|A ∩ [1,mn]|
n

.

(iv) The upper (mn)-density ofA, denoted by dmn(A), is defined through:

dmn(A) := lim sup
n→∞

|A ∩ [1,mn]|
n

.

Then we know the following:

Lemma 1. Suppose that q ≥ 1, A = {n1, n2, · · ·, nk, · · ·}, where (nk) is a
strictly increasing sequence of positive integers.
Then dq(A) = lim infk→∞

k

n
1/q
k

and dq(A) > 0 iff there exists a finite con-

stant L > 0 such that nk ≤ Lkq, k ∈ N.

We also need the following notions of lower and upper densities:

Definition 1.2. Suppose q ∈ [1,∞), (mn) is an increasing sequence in
[1,∞) and A ⊆ N. Then we define:

(i) The lower l; q-Banach density of A, denoted shortly by Bdl;q(A), as
follows

Bdl;q(A) := lim inf
s→+∞

lim inf
n→∞

|A ∩ [n+ 1, n+ sq]|
s

.

(ii) The lower u; q-Banach density of A, denoted shortly by Bdu;q(A),

as follows

Bdu;q(A) := lim sup
s→+∞

lim inf
n→∞

|A ∩ [n+ 1, n+ sq]|
s

.

(iii) The l; q-Banach density of A, denoted shortly by Bdl;q(A), as follows

Bdl;q(A) := lim inf
s→+∞

lim sup
n→∞

|A ∩ [n+ 1, n+ sq]|
s

.

(iv) The u; q-Banach density of A, denoted shortly by Bdu;q(A), as fol-
lows

Bdu;q(A) := lim sup
s→+∞

lim sup
n→∞

|A ∩ [n+ 1, n+ sq]|
s

.

(v) The lower l; (mn)-Banach density of A, denoted shortly by
Bdl;mn

(A), as follows

Bdl;mn
(A) := lim inf

s→+∞
lim inf
n→∞

|A ∩ [n+ 1, n+ms]|
s

.
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(vi) The lower u; (mn)-Banach density of A, denoted shortly by
Bdu;mn

(A), as follows

Bdu;mn
(A) := lim sup

s→+∞
lim inf
n→∞

|A ∩ [n+ 1, n+ms]|
s

.

(vii) The (upper) l; (mn)-Banach density of A, denoted shortly by
Bdl;mn(A), as follows

Bdl;mn(A) := lim inf
s→+∞

lim sup
n→∞

|A ∩ [n+ 1, n+ms]|
s

.

(viii) The (upper) u; (mn)-Banach density of A, denoted shortly by
Bdu;mn(A), as follows

Bdu;mn(A) := lim sup
s→+∞

lim sup
n→∞

|A ∩ [n+ 1, n+ms]|
s

.

The condition lim infn→∞
mn
n > 0 is equivalent to saying that there exists

a finite constant L ≥ 1 such that n ≤ Lmn, n ∈ N. Keeping in mind this
observation, it can be simply seen that the following auxiliary result holds
true (cf. also [17]):

Lemma 2. Let A ⊆ N.
(i) Suppose that lim infn→∞

mn
n > 0. Then Bdl;mn

(A) = 0 iff
Bdu;mn

(A) = 0 iff A is finite or A is infinite non-syndetic.
(ii) Suppose that lim infn→∞

mn
n > 0. Then dmn

(A) > 0 provided that A
is syndetic.

2. Reiterative (mn)-distributional chaos of type s and
reiterative λ-distributional chaos of type s

for binary relations

In the remaining part of paper, we always assume that (mn) is an in-
creasing sequence in [1,∞) satisfying lim infn→∞

mn
n > 0, i.e. there exists

a finite constant L ≥ 1 such that n ≤ Lmn, n ∈ N.
We will use the following auxiliary lemma:

Lemma 3. Suppose that A ⊆ N and dmn
(A) = 0. Then dmn(Ac) ≥ 1

L .

Proof. It is clear that
|Ac ∩ [1,mn]|

n
≥ mn − 1

n
− |A ∩ [1,mn]|

n
for all n ∈ N. (2.1)
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Let (nk) be a strictly increasing sequence of positive integers such that

lim
k→+∞

|A ∩ [1,mnk
]|

nk
= 0. (2.2)

Due to (2.1)-(2.2), we have

dmn(Ac) ≥ lim sup
k→+∞

mnk
− 1

nk
− lim
k→+∞

|A ∩ [1,mnk
]|

nk
≥ 1

L
,

as claimed. �

Suppose that σ > 0, ε > 0 and (xk)k∈N, (yk)k∈N are two given sequences
in X. Consider the following conditions:

dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
= 0,

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0,
(2.3)

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
= 0,

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0,
(2.4)

dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
= 0,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0,
(2.5)

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
= 0,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0.
(2.6)

In the following definition, we introduce the notion of an (mn, X̃)-reitera-
tively distributionally chaotic sequence (ρk)k∈N of binary relations of type
s ∈ {0, 1−, 1+, 2−} following the ideas of J. C. Xiong, H. M. Fu and H. Y.
Wang [22] for continuous mappings between compact metric spaces (mn ≡
n1/λ) and A. Bonilla, M. Kostić [6] for linear continuous mappings between
Banach spaces.

Definition 2.1. Suppose that, for every k ∈ N, ρk : D(ρk) ⊆ X → Y

is a binary relation and X̃ is a non-empty subset of X. If there exist an
uncountable set S ⊆

⋂∞
k=1D(ρk) ∩ X̃ and σ > 0 such that for each ε > 0

and for each pair x, y ∈ S of distinct points we have that for each k ∈ N
there exist elements xk ∈ ρkx and yk ∈ ρky such that (2.3) [(2.4),(2.5),(2.6)]
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holds, then we say that the sequence (ρk)k∈N is (mn, X̃)-reiteratively distri-
butionally chaotic of type 1− [1+, 2−, 0] (X̃-reiteratively distributionally
chaotic of type 1− [1+, 2−, 0], if mn ≡ n).

Let s ∈ {0, 1−, 1+, 2−}. The sequence (ρk)k∈N is said to be densely
(mn, X̃)-reiteratively distributionally chaotic of type s (densely X̃-reite–
ratively distributionally chaotic of type s, if mn ≡ n) iff S can be chosen
to be dense in X̃. A binary relation ρ : D(ρ) ⊆ X → X is said to be
(densely) (mn, X̃)-reiteratively distributionally chaotic of type s ((densely)
X̃)-reiteratively distributionally chaotic of type s, if mn ≡ n) iff the se-
quence (ρk ≡ ρk)k∈N is. The set S is said to be (mn, σX̃)-reiteratively
scrambled set of type s ((mn, σ)-reiteratively scrambled set of type s in the
case that X̃ = X) of the sequence (ρk)k∈N (the binary relation ρ); in the
case that X̃ = X, then we also say that the sequence (ρk)k∈N (the binary re-
lation ρ) is mn-reiteratively distributionally chaotic of type s (reiteratively
distributionally chaotic of type k, if mn ≡ n). If mn ≡ n, then it is said
that the set S is σX̃ -reiteratively scrambled set of type s (σ-reiteratively
scrambled set of type s in the case that X̃ = X).

Let λ ∈ (0, 1) and mn ≡ n1/λ. Then the (dense) (mn, X̃)-reiterative
distributional chaos of type s is also called (dense) (λ, X̃)-reiterative dis-
tributional chaos of type s, the (dense) mn-reiterative distributional chaos
of type s is also called (dense) λ-reiterative distributional chaos of type
s and the (mn, σX̃)-reiteratively scrambled set S of type s is also called
(λ, σX̃)-reiteratively scrambled set of type s.

The usually examined notion of (X̃-)distributional chaos is obtained sim-
ply by plugging mn ≡ n in (2.3): in our framework, (X̃-)distributional
chaos is nothing else but (X̃-)reiterative distributional chaos of type 1 − .
Since for each sequence (mn) under our consideration there exists a finite
constant L > 0 such that dmn

(A) ≥ L−1d(A) for any subset A ⊆ N, it
readily follows that any (mn, X̃)-distributionally chaotic sequence of type
1− is X̃-distributionally chaotic. Furthermore, for any infinite set A ⊆ N,
having a positive Banach density and being syndetic are the same things.
Therefore, if (ρk)k∈N is an (mn, X̃)-distributionally chaotic sequence of type
s ∈ {1+, 2−, 0}, then (ρk)k∈N is a X̃-reiteratively distributionally chaotic
sequence of type s, as well (see also [16, Definition 2.1], where the notion
of X̃-reiterative distributional chaos of type s has been introduced for the
first time, under a slightly different designation).
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Due to Lemma 2(i), we immediately get that the notion of (mn, X̃)-
reiterative distributional chaos of type 0 does not depend on the particular
choice of sequence (mn) because our standing assumption is the existence
a finite constant L ≥ 1 such that n ≤ Lmn, n ∈ N, so that (2.6) holds iff
the both sequences {k ∈ N : dY (xk, yk) < σ} and {k ∈ N : dY (xk, yk) ≥ ε}
are infinite and thick (i.e., not syndetic). Therefore, we have the following:

Proposition 2.1. Let (ρk)k∈N be a sequence of binary relations between
the spaces X and Y. Then (ρk)k∈N is (mn, X̃)-reiteratively distributionally
chaotic of type 0 iff (ρk)k∈N is X̃-reiteratively distributionally chaotic of type
0.

Furthermore, almost immediately from the given definitions we have the
following:

Proposition 2.2. Suppose that s ∈ {0, 1−, 1+, 2−}. Let (ρk)k∈N be a se-
quence of binary relations between the spaces X and Y, and let (m′n) be
another increasing sequence in [1,∞) satisfying that lim infn→∞

m′n
n > 0.

Then (ρk)k∈N is (mn, X̃)-reiteratively distributionally chaotic of type s pro-
vided that (ρk)k∈N is (m′n, X̃)-reiteratively distributionally chaotic of type
s.

Corollary 2.1. Suppose that s ∈ {0, 1−, 1+, 2−}, 0 < λ1 ≤ λ2 ≤ 1 and
(ρk)k∈N is a sequence of binary relations between the spaces X and Y. Then
the sequence (ρk)k∈N is (λ2, X̃)-reiteratively distributionally chaotic of type
s provided that the sequence (ρk)k∈N is (λ1, X̃)-reiteratively distributionally
chaotic of type s.

Keeping in mind Lemma 2(i)-(ii) and an elementary reasoning, we can
simply clarify the following:

Proposition 2.3. Let (ρk)k∈N be a sequence of binary relations between the
spaces X and Y. Then the following holds:

(i) Suppose that (ρk)k∈N is (mn, X̃)-reiteratively distributionally chaotic
of type 1 − . Then (ρk)k∈N is (mn, X̃)-reiteratively distributionally
chaotic of type s ∈ {0, 1+, 2−}.

(ii) Suppose that (ρk)k∈N is (mn, X̃)-reiteratively distributionally chaotic
of type 1+ or 2 − . Then (ρk)k∈N is (mn, X̃)-reiteratively distribu-
tionally chaotic of type 0.
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The existence of sequences of single-valued linear continuous operators on
finite dimensional spaces which are λ-reiteratively distributionally chaotic
of type 1− for each number λ ∈ (0, 1) can be simply proved:

Example 1. ([19]) Due to Proposition 1, if A = {n1, n2, ···, nk, ···}, where
(nk) is a strictly increasing sequence of positive integers, then d1/λ(A) = 0

iff for any finite constant L > 0 there exists k ∈ N such that nk > Lk1/λ.

Therefore, it is very simple to construct two disjoint subsets A and B of
N such that N = A ∪ B and d1/λ(A) = d1/λ(B) = 0 for each number

λ ∈ (0, 1); for example, set an :=
∑n

i=1 22
i2 (n ∈ N), A :=

⋃
n∈2N[an, an+1]

and B := N \ A. After that, set X := K, Tk := kI (k ∈ A) and Tk := 0

(k ∈ B). Then it can be simply checked that the sequence (Tk)k∈N is
densely λ-distributionally chaotic for each number λ ∈ (0, 1), and that the
corresponding scrambled set S can be chosen to be the whole space X.

Furthermore, any two notions introduced above do not coincide for gen-
eral sequences of linear continuous operators on finite dimensional spaces;
this can be inspected as in Example 1 above. Concerning the orbits of
linear continuous operators on Fréchet spaces, it should be recalled that
there is no Li-Yorke chaotic (distributionally chaotic, therefore) operator
on a finite-dimensional Fréchet space ([5]). Mention should be also made
of paper [19], where we have constructed a weighted forward shift operator
on the Banach space l2 that is λ-distributionally chaotic for any number
λ ∈ (0, 1].

If (ρk)k∈N and X̃ are given in advance, then we define the binary relations
ρ′k : D(ρ′k) ⊆ X → Y by D(ρ′k) := D(ρk) ∩ X̃ and ρ′kx := ρkx, x ∈ D(ρ′k)

(k ∈ N). Then we have the following simple result, showing that the case
in which X̃ = X can be assumed in a certain sense (our notion can be
introduced without X̃, but it is important to know somehow the minimality
of X̃ in Definition 2.1):

Proposition 2.4. Suppose that s ∈ {0, 1−, 1+, 2−}. Then the sequence
(ρk)k∈N is (mn, X̃)-distributionally chaotic of type s iff (ρ′k)k∈N is mn-
distributionally chaotic of type s.

If the sequence (ρk)k∈N is (mn, X̃)-reiteratively distributionally chaotic of
type s ∈ {0, 1−, 1+, 2−}, then it has to be X̃-Li-Yorke chaotic in the sense
of [16, Definition 2.2]. In this paper, we have also analyzed the notions of
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(X̃, i)-mixed chaoticity, where i ∈ {1, 2, 3, 4}. Keeping in mind our previous
analyses, it could be of some importance to further specify the notions of
(X̃, 2)-mixed chaoticity and (X̃, 4)-mixed chaoticity for general sequences
of binary relations (the notions of (X̃, 1)-mixed chaoticity and (X̃, 3)-mixed
chaoticity are not interesting here because the use of lower (Banach) mn-
densities leads to the same notions). Consider the following conditions:

dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
= 0 and lim inf

k→∞
dY
(
xk, yk

)
= 0, (2.7)

lim sup
k→∞

dY
(
xk, yk

)
> 0 and dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0. (2.8)

Then the following notions can be introduced:

Definition 2.2. Suppose that, for every k ∈ N, ρk ⊆ X × Y is a binary
relation and X̃ is a non-empty subset of X. If there exist an uncountable
set S ⊆

⋂∞
k=1D(ρk) ∩ X̃ and σ > 0 such that for each ε > 0 and for each

pair x, y ∈ S of distinct points we have that for each k ∈ N there exist
elements xk ∈ ρkx and yk ∈ ρky such that (2.7) holds, resp. (2.8) holds,
then we say that the sequence (ρk)k∈N is (X̃,mn, 2)-mixed chaotic, resp.
(X̃,mn, 4)-mixed chaotic.

Let i ∈ {2, 4}. The notion of densely (X̃,mn, i)-mixed chaotic sequence
(ρk)k∈N (the binary relation ρ), the corresponding (σX̃ ,mn, i)-mixed scram-
bled set ((σ,mn, i)-mixed scrambled set, in the case that X̃ = X), where
i = 2, the corresponding (X̃,mn, i)-mixed scrambled set ((mn, i)-mixed
scrambled set, in the case that X̃ = X), where i = 4, of the sequence
(ρk)k∈N (the binary relation ρ) is introduced as above; in the case that
X̃ = X, then we also say that the sequence (ρk)k∈N (the binary relation ρ)
is (mn, i)-mixed chaotic.

It is clear that any (X̃,mn, 2)-mixed chaotic, resp. (X̃,mn, 4)-mixed
chaotic, sequence of binary relations needs to be (X̃, 2)-mixed chaotic (i.e.,
(X̃, n, 2)-mixed chaotic), resp. (X̃, 4)-mixed chaotic (i.e., (X̃, n, 4)-mixed
chaotic). The converse statement is not true, however.

The previous definition covers, in particular, the case in which mn ≡
n1/λ for some number λ ∈ (0, 1). Then (X̃,mn, 2)-mixed chaoticity and
(X̃,mn, 4)-mixed chaoticity is called (X̃, λ, 2)-mixed chaoticity and (X̃, λ, 4)-
mixed chaoticity, respectively. Similar terminology is accepted for all other
terms introduced above.
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For some notions of distributional chaos, it is an essential thing that the
pivot spaces X and Y are equipped with linear vector structures. For ex-
ample, the notion of 〈X̃,mn, 2〉-mixed chaoticity can be also introduced for
general sequences of binary relations between the spaces X and Y , provided
that the space Y is a Fréchet space (see also [16, Definition 4.1]).

2.1. Reiterative (mn)-distributional chaos of type s and reiterative
λ-distributional chaos of type s in Fréchet spaces. For the sake of
brevity and better exposition, in this subsection we will always assume that
the both spaces, X and Y, are Fréchet spaces over the same field of scalars.
And, more to the point, we will consider only multivalued linear operators
(although general definitions can be adapted for binary relations in a not
satisfactory way for further investigations).

The notion of a reiteratively mn-distributionally irregular vector of type
s for general sequence of MLOs (Ak)k∈N is introduced as follows (see [19,
Definition 2.5] for single-valued case, and [16, Subsection 4.1] for the case
in which mn ≡ n):

Definition 2.3. Suppose that (Ak)k∈N is a sequence of MLOs between the
spaces X and Y , m ∈ N and x ∈

⋂
k∈ND(Ak). Then we say that:

(i) x is (reiteratively) mn-distributionally near to zero for (Ak)k∈N iff
there exists a set B ⊆ N such that (Bdl;mn

(Bc) = 0) dmn
(Bc) = 0

and for each k ∈ N there exists xk ∈ Akx such that limk∈B xk = 0;

(ii) x is (reiteratively) mn-distributionally m-unbounded for (Ak)k∈N iff
there exists a set B ⊆ N such that (Bdl;mn

(Bc) = 0) dmn
(Bc) = 0

and for each k ∈ N there exists xk ∈ Akx such that limk∈B p
Y
m(xk) =

+∞; x is (reiteratively) mn-distributionally unbounded for (Ak)k∈N
iff there exists an integer m ∈ N such that x is (reiteratively) mn-
distributionally m-unbounded for (Ak)k∈N;

(iii) x is reiteratively mn-distributionally irregular vector of type 1− for
(Ak)k∈N iff x is mn-distributionally near to zero for (Ak)k∈N and x
is mn-distributionally unbounded for (Ak)k∈N;

(iv) x is reiteratively mn-distributionally irregular vector of type 1+ for
(Ak)k∈N iff x is mn-distributionally near to zero for (Ak)k∈N and x
is reiteratively mn-distributionally unbounded for (Ak)k∈N;
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(v) x is reiteratively mn-distributionally irregular vector of type 2− for
(Ak)k∈N iff x is reiteratively mn-distributionally near to zero for
(Ak)k∈N and x is mn-distributionally unbounded for (Ak)k∈N;

(vi) x is reiteratively mn-distributionally irregular vector of type 0 for
(Ak)k∈N iff x is reiteratively mn-distributionally near to zero for
(Ak)k∈N and x is reiteratively mn-distributionally unbounded for
(Ak)k∈N.

If mn ≡ n1/λ for some λ ∈ (0, 1], then we obtain the notion of a reitera-
tively λ-distributionally irregular vector of type s for sequence (Ak)k∈N.

Definition 2.4. Suppose that s ∈ {0, 1−, 1+, 2−}, m ∈ N and (Ak)k∈N is
a sequence of MLOs between the spaces X and Y. Then we say that X ′

is reiteratively X̃mn-distributionally irregular manifold for (Ak)k∈N of type
s (reiteratively mn-distributionally irregular manifold of type s in the case
that X̃ = X) iff any element x ∈ (X ′ ∩

⋂∞
k=1D(Ak)) \ {0} is reiteratively

X̃mn-distributionally irregular vector of type s for (Ak)k∈N. Moreover, it
is said that X ′ is a uniformly reiteratively X̃mn-distributionally irregular
manifold of type s for the sequence (Ak)k∈N (uniformly reiteratively mn-
distributionally irregular manifold of type s in the case that X̃ = X) iff there
exists m ∈ N such that the orbit of each vector x ∈ (X ′∩

⋂∞
k=1D(Ak))\{0}

under (Ak)k∈N is both reiteratively mn-distributionally m-unbounded of
type s and reiteratively mn-distributionally near to 0 of type s, with the
meaning clear. Finally, if X ′ is dense in X̃, then we say that X ′ is dense
(uniformly) reiteratively X̃mn−distributionally irregular manifold of type s
for (Ak)k∈N.

Again, ifmn ≡ n1/λ for some number λ ∈ (0, 1], then we obtain the notion
of a (dense, uniformly) reiteratively X̃λ-distributionally irregular manifold
of type s for (Ak)k∈N.

The notions from the previous two definitions are introduced for an MLO
A : D(A) ⊆ X → X similarly as before, by considering the sequence
(Ak ≡ Ak)k∈N.

If the set A ⊆ N has the lower (Banach) mn-density equal to zero, then
the same holds for the set A ∪ B, where B is any finite subset of N. Using
this fact, we can almost immediately clarify the following:

(i) IfX ′ is a uniformly reiteratively X̃mn-distributionally irregular man-
ifold of type s for the sequence (Ak)k∈N, then X ′ is reiteratively
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X̃2−m−1-scrambled set of type s for the sequence (Ak)k∈N (here
m ∈ N has the same value as in Definition 2.4).

(ii) If x ∈ X̃ ∩
⋂∞
k=1D(Ak) is a reiteratively X̃mn-distributionally irreg-

ular vector of type s for the sequence (Ak)k∈N, then X ′ ≡ span{x}
is a uniformly reiteratively X̃mn-distributionally irregular manifold
of type s for the sequence (Ak)k∈N.

For the sake of brevity, we will not consider here the notions of (X̃,mn, i)-
mixed chaotic irregular vectors and (X̃,mn, i)-mixed chaotic irregular man-
ifolds for sequences of MLOs (i ∈ {2, 4}). Finally, based on our recent re-
sults [7, Theorem 3.8] and [19, Corollary 3.6], we would like to propose the
following problem that is very similar to Problem 1 in [16]:

Problem 1. Suppose that Ω is an open connected subset of K = C satisfy-
ing Ω ∩ {z ∈ C : |z| = 1} 6= ∅. Let f : Ω→ X \{0} be an analytic mapping
such that λf(λ) ∈ Af(λ) for all λ ∈ Ω. Set X̃ := span{f(λ) : λ ∈ Ω}. Is
it true that the operator A|X̃ is densely mn-distributionally chaotic in the
space X̃, for any increasing sequence (mn) in [1,∞) satisfying
lim infn→∞

mn
n > 0?

3. Further extensions of reiterative (mn)-distributional
chaos of type s and reiterative λ-distributional

chaos of type s

In [4], N. C. Bernardes Jr. et al. have considered the notion of distribu-
tional chaos of type s ∈ {1, 2, 21

2 , 3} for linear continuous operators acting
on Banach spaces. The notion from this paper has been recently analyzed
and extended in [16] for general sequences of binary relations in metric
spaces by using the lower and upper Banach densities. More precisely, in
[16, Definition 3.1], the author has introduced the notion of reiterative X̃-
distributional chaos of type i; s, where i ∈ {0, 1, 2} and s ∈ {1, 2, 21

2 , 3}.
There are several different ways how one can further specify and general-
ize this notion but, for the sake of brevity, we will analyze here just a few
possible ways for doing so.

Suppose that σ, σ′ > 0, ε > 0 and (xk)k∈N, (yk)k∈N are two given
sequences in X. Consider the following conditions:

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0, (3.1)
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dmn

({
k ∈ N : dY

(
xk, yk

)
< σ′

})
< +∞,

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0,

dmn

({
k ∈ N : dY

(
xk, yk

)
< σ′

})
< +∞,

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;

(3.2)

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ′

})
< +∞,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;

(3.3)

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ′

})
< +∞,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;

(3.4)

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0,

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;
(3.5)

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;
(3.6)

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0,

dmn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;
(3.7)

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ σ

})
> 0,

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
≥ ε
})

= 0;
(3.8)
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there exist c > 0 and r > 0 such that

dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c < dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.9)

for 0 < σ < r;

there exist c > 0 and r > 0 such that

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c < dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.10)

for 0 < σ < r;

there exist c > 0 and r > 0 such that

dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c < Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.11)

for 0 < σ < r;

there exist c > 0 and r > 0 such that

Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c <

< Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.12)

for 0 < σ < r;

there exist c > 0 and r > 0 such that

0 = dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c <

< dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.13)

for 0 < σ < r;

there exist c > 0 and r > 0 such that

0 = Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c <

< dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.14)

for 0 < σ < r;

there exist c > 0 and r > 0 such that

0 = dmn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c <

< Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.15)
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for 0 < σ < r;

there exist c > 0 and r > 0 such that

0 = Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
< c <

< Bdl;mn

({
k ∈ N : dY

(
xk, yk

)
< σ

})
(3.16)

for 0 < σ < r;

there exist a, b, c > 0 such that (3.9) holds for all σ ∈ [a, b]; (3.17)

there exist a, b, c > 0 such that (3.10) holds for all σ ∈ [a, b]; (3.18)

there exist a, b, c > 0 such that (3.11) holds for all σ ∈ [a, b]; (3.19)

there exist a, b, c > 0 such that (3.12) holds for all σ ∈ [a, b]. (3.20)

Now we are ready to introduce the notion of [X̃,mn, i]-distributional
chaos for any integer i ∈ [1, 20] :

Definition 3.1. Suppose that, for every k ∈ N, ρk : D(ρk) ⊆ X → Y is a
binary relation and X̃ is a non-empty subset of X.

(i) 1 ≤ i ≤ 4 : If there exist an uncountable set S ⊆
⋂∞
k=1D(ρk) ∩ X̃

and σ, σ′ > 0 such that for each ε > 0 and for each pair x, y ∈ S
of distinct points we have that for each k ∈ N there exist ele-
ments xk ∈ ρkx and yk ∈ ρky such that (3.1), resp. <(3.2), (3.3),
(3.4)> holds, then we say that the sequence (ρk)k∈N is reiteratively
[X̃,mn, 1]-distributionally chaotic, resp. <reiteratively [X̃,mn, 2]-
distributionally chaotic, reiteratively [X̃,mn, 3]-distributionally
chaotic, reiteratively [X̃,mn, 4]-distributionally chaotic>;

(ii) 5 ≤ i ≤ 8 : If there exist an uncountable set S ⊆
⋂∞
k=1D(ρk) ∩ X̃

and σ > 0 such that for each ε > 0 and for each pair x, y ∈ S

of distinct points we have that for each k ∈ N there exist elements
xk ∈ ρkx and yk ∈ ρky such that (3.7) holds, resp. <(3.6), (3.5),
(3.8)> holds, then we say that the sequence (ρk)k∈N is reiteratively
[X̃,mn, 5]-distributionally chaotic, resp. <reiteratively [X̃,mn, 6]-
distributionally chaotic, reiteratively [X̃,mn, 7]-distributionally
chaotic, reiteratively [X̃,mn, 8]-distributionally chaotic>;
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(iii) 9 ≤ i ≤ 16 : If there exist an uncountable set S ⊆
⋂∞
k=1D(ρk) ∩ X̃

and c, r > 0 such that for each pair x, y ∈ S of distinct points we
have that for each k ∈ N there exist elements xk ∈ ρkx and yk ∈ ρky
such that (3.9) holds for 0 < σ < r, resp. <(3.9), ..., (3.16)> holds
for 0 < σ < r, then we say that the sequence (ρk)k∈N is reiteratively
[X̃,mn, 9]-distributionally chaotic, resp. <reiteratively [X̃,mn, 10]-
distributionally chaotic, ..., reiteratively [X̃,mn, 16]-distributionally
chaotic>;

(iv) 17 ≤ i ≤ 20 : If there exist an uncountable set S ⊆
⋂∞
k=1D(ρk)∩ X̃

and a, b, c > 0 such that for each pair x, y ∈ S of distinct
points we have that for each k ∈ N there exist elements xk ∈ ρkx
and yk ∈ ρky such that (3.17) holds for σ ∈ [a, b], resp. <(3.18)
holds for σ ∈ [a, b], (3.19) holds for σ ∈ [a, b], resp. (3.20) holds
for σ ∈ [a, b] >, then we say that the sequence (ρk)k∈N is reit-
eratively [X̃,mn, 17]-distributionally chaotic, resp. <reiteratively
[X̃,mn, 18]-distributionally chaotic, reiteratively [X̃,mn, 19]-distri–
butionally chaotic, reiteratively [X̃,mn, 20]-distributionally chaotic>.

Let i ∈ N∩ [1, 20]. Then we say that the sequence (ρk)k∈N is densely reiter-
atively [X̃,mn, i]-distributionally chaotic iff S can be chosen to be dense in
X̃. A binary relation ρ : D(ρ) ⊆ X → X is said to be (densely) reiteratively
[X̃,mn, i]-distributionally chaotic iff the sequence (ρk ≡ ρk)k∈N is. The
set S is said to be reiteratively [X̃,mn, i]-scrambled set, resp. reiteratively
[mn, i]-scrambled set in the case that X̃ = X, of the sequence (ρk)k∈N (the
binary relation ρ); in the case that X̃ = X, then we also say that the se-
quence (ρk)k∈N (the binary relation ρ) is reiteratively [mn, i]-distributionally
chaotic.

The case in which mn ≡ n1/λ for some number λ ∈ (0, 1] is most intrigu-
ing and, in this case, the (dense) reiterative [X̃,mn, i]-distributional chaos is
also called reiterative [X̃, λ, i]-distributional chaos (reiterative [X̃, i]-distri–
butional chaos, if λ = 1), the set S is also called reiteratively [X̃, λ, i]-
scrambled set (reiteratively [λ, i]-scrambled set in the case that
X̃ = X)/reiteratively [X̃, i]-scrambled set, if λ = 1 (reiteratively [i]-scram–
bled set in the case that X̃ = X and λ = 1), and the reiterative [mn, i]-
distributional chaos is also called reiterative [λ, i]-distributional chaos ([i]-
distributional chaos, if λ = 1).



REITERATIVE (mn)-DISTRIBUTIONAL CHAOS... 23

It is clear that we can formulate a great deal of statements concern-
ing [X̃,mn, i]-distributional chaos that are straightforward consequences of
the introduced definition. On the other hand, some questions are not so
easy and trivial for consideration; for example, the following holds (see also
Proposition 2.3(i)):

Proposition 3.1. Suppose that X̃ is a non-empty subset of X and (ρk)k∈N
is a given sequence of binary relations. If (ρk)k∈N is (mn, X̃)-distributionally
chaotic of type 1−, then (ρk)k∈N is [X̃,mn, i]-distributionally chaotic for
any i ∈ {1, 5, 17}. Furthermore, if |ρkx| = 1 for each k ∈ N and x ∈⋂∞
k=1D(ρk) ∩ X̃, then (ρk)k∈N is [X̃,mn, i]-distributionally chaotic for i ∈
{9, 13}.

Proof. Suppose that (ρk)k∈N is (mn, X̃)-distributional chaotic of type 1− .
Let ε ∈ (0, lim infn→∞

mn
2n ), let the uncountable set S ⊆

⋂∞
k=1D(ρk) ∩

X̃, the number σ > 0 and the elements xk ∈ ρkx and yk ∈ ρky (k ∈
N) satisfy the requirements prescribed in Definition 2.1. Since the second
inequality in (3.1) holds with σ = σ′, in order to prove that (ρk)k∈N is
[X̃,mn, 1]-distributionally chaotic, we only need to show that dmn({k ∈ N :

dY (xk, yk) ≥ σ}) > 0. Suppose the contrary. Then there exists an integer
n0(ε) ∈ N such that the segment [1,mn] contains at least bmn − εn − 2c
elements of the set {k ∈ N : dY (xk, yk) < σ} (n ∈ N, n ≥ n0(ε)). This yields
dmn

({k ∈ N : dY (xk, yk
)
< σ}) > lim infn→∞

mn−εn−3
n = lim infn→∞[mn

n −
ε] > 0, which is a contradiction. Using Lemma 3, it readily follows that the
first inequality in (3.5) holds, so that (ρk)k∈N is [X̃,mn, 5]-distributionally
chaotic. It is almost immediate from definitions that (mn, X̃)-distributional
chaos of type 1− implies [X̃,mn, 17]-distributionally chaos. Suppose now
that |ρkx| = 1 for each k ∈ N and x ∈

⋂∞
k=1D(ρk) ∩ X̃. Then we have

dmn
({k ∈ N : dY (xk, yk) ≥ ε}) = 0 for any ε > 0, so that (ρk)k∈N is

[X̃,mn, i]-distributionally chaotic for i ∈ {9, 13} due to Lemma 3, with
c = 1/L. �

In general case, we can have Bdl;mn(A) = 0 but dmn(A) = +∞ for a
set A ⊆ N (see e.g. [17, Example 2.1(ii)]), so that it is not expected that
the [X̃,mn, 1]-distributional chaos implies [X̃,mn, i]-distributional chaos for
i ∈ {2, 3, 4}, as in the case that mn ≡ n. Any further analysis of reiterative
[X̃,mn, i]-distributional chaos is without scope of this paper and, from the
sake of brevity, we will also skip all related details regarding reiteratively
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[X̃,mn, i]-distributionally irregular manifolds for MLOs in Fréchet spaces
(see also [19]). Speaking-matter-of-factly, we would like to make only one
question more to complete this section. Let i ∈ N ∩ [1, 20], and let the
sequence (ρk)k∈N be [X̃,mn, i]-distributionally chaotic. Suppose that (m′n)

is another increasing sequence in [1,∞) satisfying lim infn→∞
m′n
n > 0 and

m′n ≤ mn, n ∈ N. Then it is not clear from definition whether the sequence
(ρk)k∈N will be [X̃,m′n, i]-distributionally chaotic.

4. Conclusions and final remarks

Suppose that (mn) is an increasing sequence in [1,∞) satisfying
lim infn→∞

mn
n > 0, λ ∈ (0, 1], s ∈ {0, 1−, 1+, 2−} and i ∈ N∩[1, 20]. In this

heuristical study, we have introduced and analyzed the concepts of reitera-
tive (mn, X̃)-distributional chaos of type s, reiterative (λ, X̃)-distributional
chaos of type s, reiterative [X̃,mn, i]-distributional chaos and reiterative
[X̃, λ, i]-distribu-tional chaos. Our definitions and results are given for gen-
eral sequences of binary relations over metric spaces, while special attention
is paid to multivalued linear operators in Fréchet spaces. The main aim of
study is, actually, to fix the notion necessary for further examinations of
distributional chaos in multi-valued setting.

Acknowledgment. The authors are partially supported by grant 174024
of Ministry of Science and Technological Development, Republic of Serbia.

References

[1] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math-
ematics, Cambridge University Press, Cambridge, UK, 179(1), 2009.

[2] T. Bermúdez, A. Bonilla, F. Martinez-Gimenez, A. Peris, Li-Yorke and distribution-
ally chaotic operators, J. Math. Anal. Appl. 373 (2011), 83–93.

[3] N. C. Bernardes Jr., A. Bonilla, V. Müler, A. Peris, Distributional chaos for linear
operators, J. Funct. Anal. 265 (2013), 2143–2163.

[4] N. C. Bernardes Jr., A. Bonilla, A. Peris, X. Wu, Distributional chaos for operators
on Banach spaces, J. Math. Anal. Appl. 459 (2018), 797–821.

[5] N. C. Bernardes Jr., A. Bonilla, V. Müller, A. Peris, Li-Yorke chaos in linear dynam-
ics, Ergodic Theory Dynamical Systems 35 (2015), 1723–1745.

[6] A. Bonilla, M. Kostić, Reiterative distributional chaos on Banach spaces, Int. J. Bif.
Chaos, in press.

[7] J. A. Conejero, M. Kostić, P. J. Miana, M. Murillo-Arcila, Distributionally chaotic
families of operators on Fréchet spaces, Comm. Pure Appl. Anal. 15 (2016), 1915–
1939.



REITERATIVE (mn)-DISTRIBUTIONAL CHAOS... 25

[8] J. A. Conejero, C.-C. Chen, M. Kostić, M. Murillo-Arcila, Dynamics of multivalued
linear operators, Open Math. 15 (2017), 948-958.

[9] J. A. Conejero, C.-C. Chen, M. Kostić, M. Murillo-Arcila, Dynamics on binary rela-
tions over topological spaces, Symmetry 2018, 10, 211; doi:10.3390/sym10060211.

[10] R. Cross,Multivalued Linear Operators, Marcel Dekker Inc., New York, 1998.
[11] K.-G. Grosse-Erdmann, A. Peris, Linear Chaos, Springer-Verlag, London, 2011.
[12] D. Goncalves, D. Royer, Ultragraphs and shift spaces over infinite alphabets, Bull.

Sci. Math. 141 (2017), 25–45.
[13] D. Goncalves, B. B. Uggioni, Li-Yorke chaos for ultragraph shift spaces, preprint,

arXiv:1806.07927.
[14] M. Kostić, F-hypercyclic extensions and disjoint F-hypercyclic extensions of binary

relations over topological spaces, Funct. Anal. Approx. Comput. 10 (2018), 41–52.
[15] M. Kostić, F-Hypercyclic and disjoint F-hypercyclic properties of binary relations

over topological spaces, Math. Bohemica, in press.
[16] M. Kostić, Distributional chaos and Li-Yorke chaos in metric spaces, Chely. Phy.

Math. J., 4 (2019), 42–58.
[17] M. Kostić, F-Hypercyclic operators on Fréchet spaces, Publ. Inst. Math. Sér., sub-

mitted, arXiv: 1809.02549.
[18] M. Kostić, Disjoint distributional chaos in Fréchet spaces, Revista Mat. Complut.,

submitted, arXiv:1812.03824.
[19] M. Kostić, Reiterative mn-distributional chaos in Fréchet spaces, preprint,

arXiv:1902.03474.
[20] R. A. Martínez-Avendano, Hypercyclicity of shifts on weighted Lp spaces of directed

trees, J. Math. Anal. Appl. 446 (2017), 823–842.
[21] P. Namayanja, Chaotic phenomena in a transport equation on a network, Discrete

Contin. Dyn. Syst. Ser. B. 23 (2018), 3415–3426.
[22] J. C. Xiong, H. M. Fu, H. Y. Wang, A class of Furstenberg families and their appli-

cations to chaotic dynamics, Sci. China Math. 57 (2014), 823–836.

Marko Kostić
University of Novi Sad,
Faculty of Technical Sciences,
Trg D. Obradovića 6, 21125 Novi Sad,
Serbia
E-mail address: marco.s@verat.net

Daniel Velinov
Ss. Cyril and Methodius University,
Faculty of Civil Engineering,
Partizanski Odredi 24, 1000 Skopje,
North Macedonia
E-mail address: velinovd@gf.ukim.edu.mk


	1. Introduction and Preliminaries
	1.1. Binary relations and multivalued linear operators
	1.2. Lower and upper densities

	2. Reiterative (mn)-distributional chaos of type s and reiterative -distributional chaos of type s  for binary relations
	2.1. Reiterative (mn)-distributional chaos of type s and reiterative -distributional chaos of type s in Fréchet spaces

	3. Further extensions of reiterative (mn)-distributional  chaos of type s and reiterative -distributional chaos of type s
	4. Conclusions and final remarks
	Acknowledgment

	References

