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Abstract. For computational reasons, the spline interpolation of gravitational potential 

is usually done in a spherical framework [3]. However, the increasing observational 

accuracy requires mathematical methods for geophysically more relevant surfaces. We 

propose a spline method with respect to the real Earth. The spline formulation reflects 

the specific geometry of a given regular surface. This is due to the representation of the 

reproducing kernel as a Newton integral over the inner space of a regular surface. The 

approximating potential functions have the same domain of harmonicity as the actual 

Earth’s gravitational potential. Moreover, this approach is a generalization to spherical 

kernels. 

 

 

1. INTRODUCTION 

 

The Earth's gravity field is one of the most fundamental forces. Although invisible, 

gravity is a complex force of nature that has an immeasurable impact on our everyday 

lives. It is often assumed that the force of gravity on the Earth's surface has a constant 

value, and gravity is considered acting in straight downward direction, but in fact its 

value varies subtly from place to place and its direction known as the plumb line is 

actually slightly curved. If the Earth had a perfectly spherical shape and if the mass 

inside the Earth were distributed homogeneously or rotationally symmetric, these 

considerations would be true and the line along which Newton's apple fell would indeed 

be a straight one. The gravitational field obtained in this way would be perfectly 

spherically symmetric. In reality, however, the situation is much more complex. 

Gravitational force deviates from one place to the other from that of a homogeneous 

sphere, due to a number of factors, such as the rotation of the Earth, the topographic 

features (the position of mountains, valleys or ocean trenches) and variations in density 

of the Earth's interior. As a consequence the precise knowledge of the Earth's 

gravitational potential and equipotential surfaces is crucial for all sciences that 

contribute to the study of the Earth, such as seismology, topography, solid geophysics or 

oceanography. With the growing awareness with respect to environmental problems like 

pollution and climate changes, this problem becomes every day a more and more 

important issue. 
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So, how is gravitational potential calculated nowadays?  

The obvious complexity of the mathematical representation of equipotential surfaces, 

was the reason why geoscientists were choosing more suitable surfaces for the 

(approximate) construction of the geoid. It is known that the geoid to a first 

approximation is a sphere with radius about 6371 km, so first of all, approaches to deal 

with a spherical Earth have been considered. The traditional way to model the 

gravitational field is to use (Fourier) expansions with spherical harmonics as basis 

functions (which is a technique developed by Gauss in the nineteenth century). The 

spherical harmonics and their continuation to the inner and outer space as solution to 

Laplace equation are well-known. Much research concerning these functions has been 

done so far. As a result, a great number of mathematical theories concerning 

gravitational field determination were developed in the spherical framework, and 

corresponding numerical methods are known to give good accuracy. The developed 

theory of spherical harmonic splines and wavelets in [2]-[5] showed that spline 

functions can be viewed as canonical generalizations of the outer harmonics, having 

desirable properties such as interpolating, smoothing, and best approximation functions, 

while harmonic wavelets are giving possibility of multiscale analysis as constituting 

`building blocks' in the approximation of the gravitational potential. Even the latest 

gravitational potential model EGM2008 and it's predecessor EGM96 are providing 

spherical harmonics coefficients for the geoid. The spherical framework however, was 

sufficient for modelling the gravitational field until recently. The available data in the 

recent past reflected gravitational field changes at the long to medium length scales, and 

the approximations in the spherical framework could have been considered satisfactory. 

But today due to the newest satellite techniques we are able to get much more detailed 

picture of the local changes of the geopotential. On relatively short length scales (a few 

km to a few hundred km) the geoid is closely related to topography and we know that 

todays accuracies of satellite data gives us the possibility to reconstruct the geoid on 

very short length scales (e.g., the GOCE data). Also, the surface of the Earth become 

measurable with greatest precision, so today we are in position to discuss various 

developments and generalization of mathematical methods for integrals over regular 

regions, such as for example Newton integral. This situation offers new challenges to 

the geomathematicians in developing a new mathematical framework for the 

determination of the geoid. Today we are interested in non-spherical boundaries when 

solving potential theory problems, such as ellipsoids, or the real Earth's surface. [1] 

introduces the reproducing kernel Hilbert space of Newton potentials on and outside a 

given regular surface with reproducing kernel defined as a Newton integral over it's 

interior. Under this framework, a real Earth oriented strategy and method for the Earth's 

gravitational potential determination was proposed. This paper presents some of the 

results of the non-spherical theory presented in [1].  
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2. REPRODUCING KERNEL HILBERT SPACE OF NEWTONIAN 

POTENTIALS  

 

In Newtonian nomenclature, the gravitational potential V of the Earth generated by a 

mass-distribution F inside the Earth is given by the volume integral (Newton integral) 

( ) 3
| |

( ) , ,


 
F y

x yEarth
V x G dy x                                  (0.1) 

where G  is the gravitational constant ( 11 3 26.67422 10 / (kgs )G m  ) and dy  is the 

volume element. The gravitational potential of the Earth corresponding to an integrable 

and bounded density function F , satisfies the Laplace equation 0V  in the outer 

space and the Poisson equation 4V F    in the interior space. 

The Newton integral (1.1) and its first derivatives are continuous everywhere on 
3

, 

i.e., (1) 3( ).V C  The second derivatives are analytic everywhere outside the real 

Earth surface, but they have a discontinuity when passing across the surface. Moreover, 

the gravitational potential V  of the Earth, shows at infinity the following behavior: 

(i) 1
| |

| ( ) | ( ), 
x

V x x , 

(ii) 
2

1

| |
| ( ) | ( ),  

x
V x x , 

i.e., it is regular at infinity. 

It was shown in [1] that associating the density function to the class of distributionally 

harmonic functions in 2 )( intL   ensures the appropriate RKHS structure of the space of 

Newton potentials in the Earth’s exterior. The Newton integral given by  

( ) 2
| |

( ) , , ( )


    int
F y ext int
x y

V x dy x F L                     (0.2) 

defines a linear operator 2 2: ( ) ( ( ))int intL L   , with : F V , such that for 

every density function 2 ( ),intF L   
( )

| |
  int

F y

y
F dy  is a Newtonian potential in the 

free space ext . 

We denote by  the space 2( ( ))intL   of potentials in ext , i.e., we say that a 

function V  is an element in , if we can write V  in the form (1.2).  

 

Theorem 1. The space  of Newton integrals in ext corresponding to harmonic 

density functions, is a reproducing kernel Hilbert space with the reproducing kernel  

| || |
( , ) , .

 
   int

extdz
x z z

x x                                 (0.3) 

It is clear that for a fixed extx , the reproducing kernel ( , )x   is a Newtonian 

potential corresponding to the harmonic density function 1
| |x

 from 2 ( ).intL   
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Moreover, for a fixed extx , the potential ( , )x   to the density 1
| |x

 is an element 

of 1( )intL  .This fact assures that ( , )x   satisfies the Laplace equation in 
ext . 

Moreover, the potentials corresponding to densities in 2 ( )intL  are elements in 

(0) 3( )C . This is an extraordinary fact, since it means that now in interpolation 

methods we will be able to use potentials of the same nature as the Earth's gravitational 

potential, i.e., functions that are harmonic in the free space and continuous on the 

boundary instead of using outer harmonic expressions which are harmonic down to the 

Runge sphere completely situated in the Earth’s enterior. The reproducing kernel is 

available in integral form for any geophisically relevant geometry (like ellipsoid, geoid, 

actual Earth's surface). 

 

3. REAL EARTH BASED SPLINE  

 

It was shown in [1] that the Dirichlet functional of the gravitational potential for 

points on the surface  , is bounded on the reproducing kernel Hilbert space  as 

defined before. Let 1{ ,..., }N   be a given data set of Dirichlet functionals for the 

unknown potential U , corresponding to the discrete set  1, ...,N NX x x  of pairwise 

disjoint points on  , i.e., for 1,...,i N   

( ) .i i iU U x    

Our aim is to find the smoothest  - interpolant corresponding to data set 1{ ,..., }N 

where by `smoothest' we mean that the norm is minimized in . In other words, the 

problem is to find a function 
1,..., N

US  in the set  

 
1,...,

{ | , 1,..., },   
N

i
U

iP P i N  

such that 

1
,...,1

,...,
|| inf ||| | .| |




N
N

U

U

P
S P  

The corresponding representer of the functional i  can be written as  

( , ) ( , )i ix    ,  

where  is the reproducing kernel of . Then, for a given set 1,..{ }., N  of N  

Dirichlet functionals on , corresponding to the set 1,  ... },{N NX x x  of points on 

, we have the set of representers  

1{ ( , ),..., ( , )}N    . 

The reproducing property of  yields, for 1,...,i N , and P   

( ( , ), ) .i iP P    
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Having in mind that the reproducing kernel is given as a Newton integral (1.3), so are 

the representers of the functionals i , i.e.  

| || |
( , ) .int

i

dz
x z zi  

     

 

Definition 1. A system NX  of points 1, ..., Nx x  on the surface   is called fundamental 

system on  , if the corresponding representers 1 ( , ), ..., ( , )N     of a given linear 

functional  are linearly independent. 

 

The interpolating spline is defined as follows:  

 

Definition 2. Let 1,  ... },{N NX x x  be a given fundamental system of points on   and 

let 1,..{ }., N  be the set of the corresponding bounded linear Dirichlet functionals. 

Then, any function of the form  

| || |
1 1

( ) ( , ) , ,int
i

N N
extdz

i i x z x z
i i

iS x a x a x
 

 

       

with arbitrarily given (real) coefficients 1, ..., Na a  is called a   spline relative to

1,..{ }., N . 

Obviously the space 1 1( ,..., ) { ( , ),..., ( , )},N NS span      of all  splines 

relative to  1, ..., N  is an N-dimensional subspace of .  

 

As an immediate consequence of the reproducing property ,viz. the  spline 

formula we get the following  

 

Lemma 1: Let S be a function of class 1( ,..., .)NS  Then for each ,P  the 

following identity is valid 

1

( , ) .
N

i
i

iS P a P


    

 

Now the problem of determining the smoothest function in the set of all -

interpolants is related to a system of linear equations which needs to be solved to obtain 

the spline coefficients. Indeed, the application of the linear functionals  1, ..., N  to 

the spline, yields N  linear equations in the coefficients 1, ..., Na a   

1

( , ) , 1, ...,
N

N
j i

j
i ja U i N



    . 

The elements of the coefficients matrix , 1,...,( ( , ))i j Ni j    are given by 
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1
| || |

( , ) .int
i jx zj zi x

dz
 

     

Since the coefficient matrix as Gram matrix of the N linearly independent functions is 

non-singular, the linear system is uniquely solvable. Together with the set of linear 

bounded functionals and the reproducing kernel Hilbert space , the coefficients 

1, ..., Na a  define the unique interpolating spline we are looking for. Thus we can state 

 

Lemma 2 (Uniqueness of interpolation). For given U   there exist a unique 

element in 
1

1 ,...,
( , ..., )

N
N

US   .  

 

We denote this element by 
1,..., N

US . Moreover, we have the following  

 

Lemma 3. The interpolating -spline (relative to 1,..{ }., N ) is the -orthogonal 

projection of U onto the space 1( ,..., ).NS   

 

The upcoming lemmata give several properties, namely the minimum norm 

properties which also justify the use of the name `spline' for such interpolants.  

 

Lemma 4 (First minimum property). If 
1,..., N

UP  , then  

 
1 1

2 2 2
,..., ,...,

|| || || || || || .
N N

U UP S S P     

 

Lemma 5 (Second minimum property). If 1( ,..., )NS S  and 
1,..., N

UP , 

then 

 
1 1

2 2 2
,..., ,...,

|| || || || || || .
N N

U US P S P S S       

 

Summarizing our results we finally find  

 

Theorem 2: The interpolation problem 

1
,...,1

,...,
|| || inf || || ,

N
N

U

U

P
S P


  

is well-posed in the sense that its solution exists, is unique, and depends continuously on 

the data 1, ..., N  . The uniquely determined solution 
1,..., N

US  is given in the explicit 

form 
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1

1
,..., | || |

1

( ) , ,int
iN

N
U N ext

i x z x z
i

S x a dz x
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
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where the coefficients 1 , ...,N N
Na a  satisfy the linear equations 

1
| || |

1

, 1,..., .int
i j

N
N
i jx z x z

i

a dz j N
 



    

 

Remark. It should be noted that the requirement for the linear independence of the 

given bounded linear functionals is not necessary from the theoretical point of view, but 

essential for numerical computations. It guarantees that the -spline coefficients are 

uniquely determined, i.e., that the linear equation system is uniquely solvable. Without 

linear independence of the functionals, the dimension of the spline space is smaller than 

N , and the coefficients of the interpolating -spline of U relative to 1,..{ }., N  are 

no longer uniquely determined. Nevertheless, the interpolating -spline is the uniquely 

determined orthogonal projection of U  onto the spline space and all the spline 

properties are still valid. 
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