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STOCHASTIC APPROXIMATION WITH ADAPTIVE STEP

SIZES FOR OPTIMIZATION IN NOISY ENVIRONMENT

AND ITS APPLICATION IN REGRESSION MODELS

MILENA KRESOJA, MARKO DIMOVSKI, IRENA STOJKOVSKA,
AND ZORANA LUŽANIN

Abstract. We propose a generalization of recently proposed stochas-
tic approximation method with adaptive step sizes for optimization
problems in noisy environment. The adaptive step size scheme uses
only a predefined number of last noisy functional values to select a
step size for the next iterate and allows different intensities of influence
of the past functional values. The almost sure convergence is estab-
lished under suitable assumptions. Numerical results indicate a good
performance of the method. Application of the method in regression
models is presented.

1. Introduction

In this paper we consider the following optimization problem in noisy
environment

min
x∈Rn

f(x), (1)

where f : Rn → R is a continuously differentiable, possibly nonconvex
function bounded below on Rn. We assume that only noisy measurements
of the objective function f(x) and its gradient g(x) are available at every
x ∈ R

n i.e.

F (x) = f(x) + ξ and G(x) = g(x) + ε, (2)

where ξ and ε represent the noise terms, random variable and random
vector defined on a probability space (Ω,F , P ). Moreover, we assume that
there is a unique solution x∗ ∈ R

n of problem (1). We will use the following
notation

Fk = Fk(xk) = f(xk) + ξk = fk + ξk

Gk = Gk(xk) = g(xk) + εk = gk + εk, (3)
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where the index k used with ε and ξ allows us to consider the case when
the noise depends on the current iterate xk.

The most common approach for solving the problem (1) is Stochastic
Approximation (SA) algorithm [13]. For a given initial approximation, it-
erative rule of SA algorithm is given by formula

xk+1 = xk − akGk, k = 0, 1, 2, ... (4)

where ak is a nonnegative step size and Gk is the noisy measurement of the
gradient at a current iterate xk. It mimics deterministic descent direction
method and uses only noisy gradient measurements. The mean square
(m.s.) convergence is established by Robbins and Monro, [13], while the
almost sure (a.s.) convergence is proved by Chen [2] and Spall [16]. Iterative
rule of the SA algorithm (4) depends heavily on the step size sequence {ak}
which determines the rate of convergence. The most used step size sequence
is

ak =
a

(k + 1 + A)α
, (5)

where a > 0, A ≥ 0 and 0.5 < α ≤ 1. However, the step sizes (5) are
proportional to 1/k which results in a quite slow progress. The step size
selection is discussed in many papers ([3, 5, 9, 15, 16, 22, 24]). There are
also many modifications of the SA algorithm based on the search direction
([1, 15, 20, 21, 23]). Combined algorithms which use benefits from line
search methods and stochastic approximation are proposed in [7, 8].

The conditions on the step sizes ak which ensure convergence of the SA
algorithm (4) are the following

ak > 0,
∑

k

ak = ∞ and
∑

k

a2
k < ∞. (6)

The conditions (6) provide that the step size ak doesn’t decay too fast
neither too slow. These conditions are the most relevant from user’s point
of view. We will state the rest of convergence conditions.

Let {xk} be a sequence generated by SA method (4) and let Fk be
the σ-algebra generated by x0, x1, . . . , xk. The set of standard assumptions
consists of the three following assumptions, [2]:

A1 For any δ > 0 there is βδ > 0 such that

inf
||x−x∗||>δ

(x− x∗)T g(x) = βδ > 0.

A2 The observation noise (εk,Fk+1) is a martingale difference sequence
with

E(εk|Fk) = 0 and E[||εk||2] < ∞ a.s for all k,

where {Fk} is a family of nondecreasing σ-algebras.
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A3 The gradient g and the conditional second moment of the observa-
tion noise have the following upper bound

||g(x)||2 + E(||εk||2|Fk) < c(1 + ||x− x∗||2) a.s. for all k and x ∈ R
n,

where c > 0 is a constant.

Assumption A1 is condition on the shape of g(x), assumption A2 is the
mean-zero noise condition, while assumption A3 is a restriction on the
magnitude of g(x).

The following theorem gives a convergence result for SA method (4).

Theorem 1. [2] Assume that A1-A3 hold. Let {xk} be a sequence generated
by SA method (4) with the gain sequence {ak} satisfying (6). Then the
sequence {xk} converges to x∗ for an arbitrary initial approximation x0.

Now, we will review a case when SA method (4) uses a descent direction
instead of a negative gradient. Direction dk is a descent direction at xk if

GT
k dk < 0, (7)

where Gk is the noisy gradient at xk (see [7] for details). For a given
initial approximation x0, the iterative rule for the SA method with descent
direction is given by the formula

xk+1 = xk + akdk, (8)

where ak is a nonnegative step size and dk is a descent direction defined by
(7). The set of assumptions which ensures the convergence of (8) is similar
to one needed for convergence of (4).

Let {xk} be a sequence generated by (8) and Fk is the σ-algebra gener-
ated by x0, x1, . . . , xk. Two additional assumptions that are imposed are,
[7]:

A4 There exist c1 > 0 such that direction dk satisfies

(xk − x∗)TE(dk|Fk) ≤ −c1||xk − x∗|| a.s. for all k.

A5 There is c2 > 0 such that

||dk|| ≤ c2||Gk|| a.s. for all k.

The assumption A4 limits the influence of noise on dk, while the assumption
A5 makes connection of the available noisy gradient with descent direction.

Theorem 2. [7] Assume that A2-A5 hold. Let {xk} be a sequence generated
by (8) with the gain sequence {ak} satisfying (6). Then the sequence {xk}
converges to x∗ a.s. for an arbitrary initial approximation x0.

Recently proposed SA algorithm with adaptive step sizes uses a general
descent direction dk defined by (7), and finds the next iterate according to
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the iterative rule (8), where step sizes ak are defined by, [9]:

ak =











aθsk , Fk < 1
m(k)

∑m(k)
j=1 Fk−j − σ

0, Fk > 1
m(k)

∑m(k)
j=1 Fk−j + σ,

a
(tk+1+A)α , otherwise

(9)

where m(k) = min{k, m}, m ∈ N, θ ∈ (0, 1), a > 0, A ≥ 0, 0.5 < α ≤ 1,

σ > 0, sk counts the occurrences of the events,
{

Fk < 1
m(k)

∑m(k)
j=1 Fk−j − σ

}

,

and tk counts the occurrences of the events
{

1
m(k)

∑m(k)
j=1 Fk−j − σ ≤ Fk ≤

1
m(k)

∑m(k)
j=1 Fk−j + σ

}

. The adaptive step size rule (9) tracks the previous

observed function values Fk−1, Fk−2, ..., Fk−m(k), to get insight into whether
the objective function is improving. If there is a ”sufficient” decrease in
the objective function, a larger step size ak = aθsk is used. Bed steps are
blocked using zero step size. Otherwise, a backup step size ak = a

(tk+1+A)α

is used. At each iteration, an interval

Jk = (
1

m(k)

m(k)
∑

j=1

Fk−j − σ,
1

m(k)

m(k)
∑

j=1

Fk−j + σ)

is constructed, that acts as a (hybrid) interval for the expected optimal
function value f∗, since it is symmetrical about the sample mean i.e. around

1
m(k)

∑m(k)
j=1 Fk−j . And if the next estimate Fk of f∗ is in the interval Jk,

a slow but safe steps are used. In [9], it is shown that under reasonable
assumptions on the noise terms, the step sizes defined by (9) satisfy the
conditions (6) a.s. This result and the SA convergence theorems, Theo-
rem 1 and Theorem 2, adapted for stochastic step sizes, ensure almost sure
convergence of the SA algorithm with adaptive step sizes (9), see [9].

In this paper we propose a generalization of the step size scheme (9) and a
corresponding adaptive step size algorithm. The proposed generalized step
size scheme allows past functional values to have not equal influence while
selecting a new step size length, and allows constructing bigger steps when
a ”sufficient” decrease in the objective function is monitored. Almost sure
convergence of the proposed algorithm is established and the algorithm is
tested on a set of standard test problems. Application to regression models
of the proposed method is explored.

The organization of the paper is the following. A new generalized step
size scheme and the algorithm are presented in Section 2. Convergence
theory is given in the same section. Numerical results are given in Section 3,
while application of the proposed method in regression models is presented
in Section 4. Conclusions are drawn in Section 5.
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2. Algorithm and Convergence Results

2.1. The Step Size Scheme and the Algorithm. We propose a gener-
alization of the step size scheme (9) which allows to use information from
previous steps in a more general way and to define bigger step sizes when
a ”sufficient” decrease in the objective function is monitored.

Let us assume that the index of the current iterate is k and we wish to
determine the step size ak in the next iterate. Denote by

∑m(k)
j=1 λk,jFk−j

a convex combination of m(k) previous noisy function values Fk−1, Fk−2,
..., Fk−m(k), where m(k) = min{k, m}, m ∈ N and λk,j ≥ λ > 0, j =

1, 2, . . . , m(k) such that
∑m(k)

j=1 λk,j = 1, for all k. Now, we will consider
the following interval

J̃k = (

m(k)
∑

j=1

λk,jFk−j − σ,

m(k)
∑

j=1

λk,jFk−j + σ), (10)

where σ > 0. If a noisy function value in kth iteration, Fk, is lower than
the lower limit of the interval J̃k, we will declare progress of the algorithm
and use a larger step in the next (k + 1)th iterate. If Fk is greater than the

upper limit of the interval J̃k, we will declare iteration as a bad step and
put xk+1 = xk. If Fk lies in the interval J̃k, the step size similar to (5) is
taken. Detail formulation of our adaptive step size scheme is given by:

ak =











bθsk , Fk <
∑m(k)

j=1 λk,jFk−j − σ

0, Fk >
∑m(k)

j=1 λk,jFk−j + σ,
a

(tk+1+A)α , otherwise

(11)

where

• m(k) = min{k, m}, m ∈ N, σ > 0, θ ∈ (0, 1), b ≥ a > 0, A ≥ 0,
0.5 < α ≤ 1,

• λk,j ≥ λ ≥ 0, j = 1, . . . , m(k) such that
∑m(k)

j=1 λk,j = 1,

• sk = sk−1 + I
{

Fk <
∑m(k)

j=1 λk,jFk−j − σ
}

, for k = 1, 2, ..., and

s0 = 0,

• tk = tk−1 + I
{

∑m(k)
j=1 λk,jFk−j − σ ≤ Fk ≤ ∑m(k)

j=1 λk,jFk−j + σ
}

,

for k = 1, 2, ..., and t0 = 0,

where I(·) stands for the indicator function.

Adaptive step sizes (11) differs from (9) in the expression
∑m(k)

j=1 λk,jFk−j

which allows previous functional values to be taken with different intensities

at each iteration k then in the arithmetic mean 1
m(k)

∑m(k)
j=1 Fk−j . In this

way, the step size scheme (11) can use more effectively the information
about the optimization process stored in previous function values. Another
advantage is that the bigger step sizes, when a ”sufficient” decrease in the
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objective function is monitored, can be taken, because of the parameter b
in the step size bθsk that is allowed to be larger than the parameter a in
the step size a

(tk+1+A)α . The step size scheme (9) is a special case of the

step size scheme (11), where λk,j = 1
m(k) , for all j = 1, 2, ..., m(k).

Finally we can formulate the algorithm with adaptive step size selection
scheme (11).

Algorithm 1. CC-Adaptive Stochastic Approximation Algorithm

Step 0. Initialization. Choose an initial point x0 ∈ R, constants σ > 0,
m ∈ N, θ ∈ (0, 1), b ≥ a > 0, A ≥ 0, 0.5 < α ≤ 1 and λ > 0. Set
k = 0.

Step 1. Choose λk,j ≥ λ > 0, j = 1, . . . , m(k) such that
∑m(k)

j=1 λk,j = 1.

Step 2. Direction selection. Choose dk such that (7) holds.
Step 3. Step size selection. Calculate the noisy function measurement

Fk and select the step size ak according to the criterion (11).
Step 4. Update iteration. Calculate xk+1 = xk +akdk, set k = k+1 and

go to Step 1.

Note that the Algorithm 1 is formulated for an arbitrary constant σ > 0.
In our numerical experiments, Section 3, we have chosen σ to be equal to
the noise level, since the mean-square error (MSE) of the function estimator
Fk of the optimal value f∗, which is equal to σ2 + (fk − f∗)2, is often a
reasonably good approximation for the variance of the sampling distribution
of Fk, [6].

2.2. Properties of the Adaptive Step Size Scheme and Conver-

gence of the Algorithm. In this subsection, we will show that the se-
quence {ak} generated by (11) satisfies the conditions (6) a.s. under rea-
sonable assumption on the noise terms ξk. Namely, we will suppose that

ξk, k = 0, 1, 2, ... are i.i.d. continuous random variables with common

probability density function (pdf) p(x) > 0 a.s. for all x ∈ R. (12)

The condition (12) is often satisfied in practice since the noise usually occurs
independently. The independent distributed normal Gaussian noise is the
one that satisfies conditions (12).

Denote by

Ak =
{

ak−1 = ak−2 = . . . = ak−m(k) = 0
}

, (13)

the event that m(k) consecutive zero steps have occurred.

Lemma 1. Let the step sizes ak be defined by (11). If the noise terms ξk

satisfy the conditions (12), then for k = 1, 2, . . ., the following inequality
holds

P (Ak) > 0, (14)

where Ak is the event defined by (13).
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Proof. Let us assume the contrary, that there exists k such that

0 = P (Ak) = P (Fk−i >

m(k)
∑

j=1

λk−i,jFk−i−j + σ, i = 1, 2, . . . , m(k)). (15)

Since for each k,
∑m(k)

j=1 λk,j = 1, we have

{

Fk−i > max
1≤j≤m(k)

Fk−i−j + σ

}

⊆







Fk−i >

m(k)
∑

j=1

λk−i,jFk−i−j + σ







,

for each i = 1, 2, ...,m(k), so

m(k)
⋂

i=1

{

Fk−i > max
1≤j≤m(k)

Fk−i−j + σ

}

⊆
m(k)
⋂

i=1







Fk−i >

m(k)
∑

j=1

λk−i,jFk−i−j + σ







,

which implies

P (Fk−i > max
1≤j≤m(k)

Fk−i−j + σ, i = 1, 2, ...,m(k))

≤ P (Fk−i >

m(k)
∑

j=1

λk−i,jFk−i−j + σ, i = 1, 2, ...,m(k)). (16)

Now, (15) and (16) imply

P (Fk−i > max
1≤j≤m(k)

Fk−i−j + σ, i = 1, 2, . . . , m(k)) = 0. (17)

Further, the proof proceeds as the proof of Lemma 3.1 in [9], and leads to
a contradiction, which implies that P (Ak) > 0 for all k. �

Lemma 2. Let the step sizes ak be defined by (11). If the noise terms ξk

satisfy the conditions (12), then for all k = 1, 2, . . .

P (ak = 0|Ak) > 0, (18)

P (ak = aθsk |Ak) > 0, (19)

and

P (ak =
a

(tk + 1 + A)α
|Ak) > 0, (20)

where Ak is the event defined by (13). Moreover, for all k = 1, 2, ...

P (ak = 0) > 0, (21)

P (ak = aθsk ) > 0, (22)

and

P (ak =
a

(tk + 1 + A)α
) > 0. (23)
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Proof. The conditional probabilities are well defined because of Lemma 1.

Under the realization of the event Ak we have that fk =
∑m(k)

j=1 λk,jfk−j .

Using the formulation of the step size rule (11), we have

P (ak = 0|Ak) = P (Fk >

m(k)
∑

j=1

λk,jFk−j + σ|Ak)

= P (fk + ξk >

m(k)
∑

j=1

λk,j(fk−j + ξk−j) + σ|Ak)

= P (ξk −
m(k)
∑

j=1

λk,jξk−j > σ), (24)

since the last conditional probability is independent of the condition.
Using convolution formula for independent random variables it can be

easily proved that the random variable ξk − ∑m(k)
j=1 λk,jξk−j has positive

density function. Therefore,

P (ak = 0|Ak) = P (ξk −
m(k)
∑

j=1

λk,jξk−j > σ) > 0. (25)

Similarly,

P (ak = aθsk |Ak) = P (ξk −
m(k)
∑

j=1

λk,jξk−j < −σ) > 0 (26)

and

P (ak =
a

(tk + 1 + A)α
|Ak) = P (−σ ≤ ξk −

m(k)
∑

j=1

λk,jξk−j ≤ σ) > 0, (27)

since σ > 0. Relations (21)-(23) are a direct consequence from Lemma 1
and (25)-(26), see Lemma 3.2 from [9] for details, which completes the
proof. �

Lemma 2 leads to important result which is stated below.

Lemma 3. Let the step sizes ak be defined by (11). If the noise terms ξk

satisfy the condition (12), then almost surely there are infinitely many steps
ak = a

(tk+1+A)α and infinitely many steps ak = bθsk .

Proof. Same as the proof of Lemma 3.3 in [9]. �

We will state now the most important property of the step size sequence
{ak} defined by (11).
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Theorem 3. If the noise terms ξk satisfy the condition (12), then the step
size sequence {ak}, defined by (11), satisfies the conditions (6) a.s.

Proof. Same as the proof of Theorem 3.1 in [9]. �

Previously mentioned SA convergence theorems, Theorem 1 and Theo-
rem 2, assume deterministic step sizes ak that satisfy conditions (6). In
order to use these results when step sizes ak are stochastic, we need to
assume that ak is Fk-measurable, where Fk is the σ-algebra generated
by x0, x1, x2, ..., xk, and {xk} is a sequence generated by the correspond-
ing algorithm, similarly as it is assumed in [9, 11]. When step sizes ak

are stochastic, we also need to assume that conditions (6) are satisfied al-
most surely (a.s.). Under those additional assumptions, SA convergence
theorems, Theorem 1 and Theorem 2, also hold when step sizes ak are
stochastic.

Now, for the step sizes ak generated by Algorithm 1, Theorem 3 ensures
almost surely fulfilment of the conditions (6), which together with assump-
tions A2-A5 ensures almost surely convergence of Algorithm 1, due to the
convergence theorem for descent direction method with SA step sizes, The-
orem 2 for stochastic step sizes ak. So, we have the following convergence
result for the method with adaptive step sizes proposed in Algorithm 1.

Theorem 4. Assume that A2-A5 hold. Let {xk} be a sequence generated by
Algorithm 1, where the noise terms ξk satisfy the condition (12). Then the
sequence {xk} converges to x∗ a.s. for an arbitrary initial approximation
x0.

The convergence of Algorithm 1 with dk = −Gk, is a direct consequence
of SA convergence theorem, Theorem 1 for stochastic step sizes ak, and the
property of the gain sequence {ak} given with Theorem 3.

Corollary 1. Assume that A1-A3 hold. Let {xk} be a sequence generated
by Algorithm 1 with dk = −Gk, where the noise terms ξk satisfy the con-
dition (12). Then the sequence {xk} converges to x∗ a.s. for an arbitrary
initial approximation x0.

3. Numerical Results

Algorithm 1 is tested with dk = −Gk and BFGS direction dk = −B−1
k Gk,

with the update formula

Bk+1 = Bk − Bkδkδ
T
k Bk

δT
k Bkδk

+
∆k∆

T
k

∆kδk
, (28)

where

δk = xk+1 − xk and ∆k = G(xk+1, εk) − G(xk, εk),

i.e. the gradient difference ∆k is calculated using the same sample set which
is already successfully tested in [7, 14, 19].
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We have chosen 18 test problems from [10] and [12]. The problems are
listed in Table 1. The normal distributed noise was added to the function
and gradient evaluations to transform original problems into problems in
noisy environment i.e. the form of the noise is

ξ ∼ N (0, σ2) and ε ∼ N (0, σ2In×n),

where σ represent the noise level and In×n is the identity matrix. Two
different levels of the noise, σ = 0.4, 1 a are tested. The noisy function and
gradient are calculated using the arithmetic mean with sample size p = 3
i.e.

Fk =
1

p

p
∑

i=1

F (xk, ξi
k) Gk = ∇F (xk, ε

i
k),

where
{

ξi
k

}

and
{

εi
k

}

are i.i.d. samples.
Each test had N = 50 independent runs starting from the same initial

point. The runs are grouped in three categories: successful (convergent),
partially successful runs and unsuccessful (divergent) runs. Run is success-
ful if a method stops due to ||Gk|| ≤ c = min{√nσ, 1}. The number of
successful runs is denoted by Nconv. If ||Gk|| > 200

√
n, run is unsuccess-

ful. The number of divergent runs is denoted by Ndiv. If the runs stops due
to reaching maximal number of 200n function evaluations are considered
partially successful and their number is denoted by Npar.

The specification of the scheme (11) is as follows. The values of pa-
rameters a, A and α are given in Table 2, while the value of parameter
b is specified within the algorithms that we compare. Results that we
present are for m = 10 and θ = 0.99. Two sets of coefficients λk,j are
considered. The first case is when arithmetic mean is used i.e. for all k,
λk,j = 1

m(k) , j = 1, . . . , m(k). The second case is when the coefficients λk,j

are chosen as following:

λk,1 =

{

1, Fk >
∑m(k)

j=1 λ̃k,jFk−j

λ̃k,1, otherwise
, (29)

and

λk,j =

{

0, Fk >
∑m(k)

j=1 λ̃k,jFk−j

λ̃k,j, otherwise
, j = 2, ..., m(k), (30)

where

λ̃k,j = λ, j 6= j̃ and λ̃k,j̃ = 1 − (m(k)− 1)λ, (31)

where λ = 0.01 and j̃ is such that Fk−j̃ = max1≤j≤m(k) Fk−j .
As a consequence of Lemma 3, we can limit the number of consecutive

zero steps, since almost surely infinitely many consecutive zero steps can
not occur. If the number of consecutive zero steps is greater than m + 1,
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Problem n x0

The Gaussian function 3 (4/10, 1, 0)
The Box 3-dimensional function 3 (0, 10, 5)
The variably dimensioned function 4 (3/4, 2/4, 1/4, 0)
The Watson function 4 (0, 0, 0, 0)
The Penalty Function 1 10 (1, 1, . . . , 1)
The Penalty Function 2 4 (1/2, 1/2, 1/2, 1/2)
The Trigonometric Function 10 (1/10, 1/10, . . . , 1/10)
The Beale Function 2 (1, 1)
The Chebyquad Function 10 (5/11, 10/11 . . . , 50/11)
The Gregory and Karney
Tridiagonal Matrix Function 4 (0, 0, 0, 0)
The Hilbert Matrix Function 4 (1, 1, 1, 1)
The De Jong Function 1 3 (−5.12, 0, 5.12)
The Branin RCOS Function 2 (−1, 1)
The Colville Polynomial 4 (1/2, 1,−1/2,−1)
The Powell 3D Function 3 (0, 1, 2)
The Himmelblau function 2 (−1.3, 2.7)
Strictly Convex 1 10 (1/10, 2/10, . . . , 1)
Strictly Convex 2 10 (1, 1, . . . , 1)

Table 1. Test problems

we use ak = a
(tk+1+A)α in next iterate. We present results for the following

6 algorithms:

• SAGD - Algorithm (4) with SA step sizes (5)
• CCGD-1- Algorithm 1 with b = a, dk = −Gk and λk,j = 1

m(k)

• CCGD-2 - Algorithm 1 with b = 1, dk = −Gk and λk,j as in (29)-
(31)

• SADD - Algorithm (8) dk = −B−1
k Gk and SA step sizes (5)

• CCDD-1 - Algorithm 1 with b = a, dk = −B−1
k Gk and λk,j = 1

m(k)

• CCDD-2 - Algorithm 1 with b = 1, dk = −B−1
k Gk and λk,j as in

(29)-(31)

Figure 1 shows the overviews of successful, partially successful and un-
successful runs of the algorithms for both noise levels σ = 0.4 and σ = 1.
The obtained results indicate that our algorithm has smaller number of di-
vergent runs when it is compared to corresponding classical SA algorithms
regardless of the noise level. For a smaller noise level and gradient direction,
the algorithm that uses coefficients λk,j of the form (29)-(31) has smaller
number of divergent runs than the algorithm that uses equal coefficients
λk,j.



STOCHASTIC APPROXIMATION WITH ADAPTIVE STEP SIZES 73

Table 2. The initialization of the parameters a, A and α.

Problem a A α

1 1 1 0.75
2 1 100 0.501
3 0.1 1 0.75
4 0.1 1 0.75
4 0.1 1 0.75
5 0.1 1 0.75
6 0.1 100 0.501
7 1 100 0.501
8 1 100 0.501
9 0.1 100 0.75
10 0.5 1 0.501
11 0.5 1 0.501
12 0.1 100 0.75
13 0.5 1 0.501
14 1 100 0.501
15 0.1 100 0.75
16 0.5 1 0.501
17 0.5 100 0.501
18 0.1 100 0.75
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Figure 1. Percentage of successful, partially successful and
divergent runs

The performance measure that we use is the number of function evalua-
tions in successful and partially successful runs

πij =
1

|Nconij

⋃

Nparij|
∑

r∈Nconij

S

Nparij

fcalcr
ij

nj
,
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where Nconij is the set of indices of successful runs for ith Algorithm to
solve problem j, Nparij is the set of indices of partially successful runs
for ith Algorithm to solve problem j, fcalcr

ij is the number of function
evaluations needed for ith Algorithm to solve problem j in rth run and nj

is the dimension of problem j. Performance profiles are given for two noise
levels σ = 0.4 and σ = 1 on Figure 2.
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Figure 2. Performance profiles

Performance profiles confirm the efficiency of the proposed method with
adaptive step sizes, which means that SA with the adaptive step size scheme
(11) overperforms classical SA with the step sizes of the form (5), regardless
of the search direction, and on different noise levels. For a smaller noise
level, the BFGS direction and equal coefficients λk,j is the most robust
choice, and for the larger noise level, the gradient direction and the choice
(29)-(31) of the coefficients λk,j is the most robust.

4. Application to Regression Models

In this section we will consider the linear regression model given by it’s
matrix form

y = Xβ + ε, (32)

where:

• y = (y1, y2, ..., yn)
T is n-vector of dependent variables,

• X = [xij]n×p is n × p-matrix of independent variables,

• β = (β1, β2, ..., βp)
T is p-vector of associated regression coefficients,

and
• ε = (ε1, ε2, ..., εn)

T is n-vector which components are independent
and identically distributed random errors with E(εi) = 0 and D(εi) =
σ2.
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The most commonly used method for estimating the unknown param-
eters β1, β2, ..., βp is the Ordinary Least-Square (OLS) method, where the
residual square error

RSS =

n
∑

i=1

(

yi −
p

∑

j=1

xijβj

)2

is minimized. In other words, parameter estimates are obtained by solving
the unconstrained OLS optimization problem

β̂ols = argmin
β∈Rp

n
∑

i=1

(

yi −
p

∑

j=1

xijβj

)2
. (33)

To overcome the deficiencies of the OLS method and improve the esti-
mates obtained by it, Tibshirani introduced the Least Absolute Shrinkage
and Selection Operator (LASSO) regularization method, [17]. LASSO reg-
ularization is a process of adding constraints in the form of L1-norm of
the parameter vector β. The associated constrained optimization problem
given by

β̂lasso = argmin
β∈Rp

n
∑

i=1

(

yi −
p

∑

j=1

xijβj

)2
subject to

p
∑

j=1

|βj| ≤ t, (34)

is equivalent to the unconstrained optimization problem

β̂lasso = argmin
β∈Rp

{

n
∑

i=1

(

yi −
p

∑

j=1

xijβj

)2
+ µ

p
∑

j=1

|βj|
}

. (35)

Due to the nature of the L1 penalty, the LASSO does both continuous
shrinkage and automatic variable selection at the same time. The tuning
parameter t controls the amount of shrinkage that is applied to the esti-
mates. Parameters t and µ have some kind of a reciprocal relationship,
[17]. In practice, the value of µ, as the level of regularization, is prede-
fined, or it is chosen from some candidate set using selection methods as
Cross-Validation, BIC or AIC.

We are going to apply SA method with adaptive step sizes given by
Algorithm 1, for solving the unconstrained optimization problem (35) in
order to find the estimates of the parameter vector β in the regression
model (32). For the descent direction dk in Algorithm 1, the negative noisy
gradient is used i.e. dk = −Gk, and results from this optimization are
compared to the classical SA method (4).

Application is illustrated on the following example.

Example 1. [17] In this example we are looking for the estimate of the
parameter β in Y = Xβ + ε, where the true value of β is

β = (3, 1.5, 0, 0, 2, 0, 0, 0)T .
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We simulated N = 50 data sets of n = 100 observations, where the
random errors εi, i = 1, 2, ..., n are i.i.d with normal Gaussian distributions

εi ∼ N (0, σ2), i = 1, 2, ..., n,

with σ = 3. The column vectors Xi, i = 1, 2, ..., p of the matrix X of inde-
pendent variables are chosen to have n-dimensional normal distributions

Xj ∼ N (0, C), j = 1, 2, ..., p,

where the covariance matrix C = [cij] is such that cij = ρ|i−j|, i, j =
1, 2, ..., p, with ρ = 0.5, [18]. The K-fold cross-validation with K = 5 is
used to estimate the regularization level µ in (35), [4]. As a candidate
set for the regularization parameter µ, the set {0, 0.01, 0.1, 1, 10, 100} is
considered.

Three optimization methods SAGD, CCGD-1 and CCGD-2, described in
the previous section, have been tested, with a difference for CCGD-2 in the
choice of b, which is here b = a as in CCGD-1. The values of parameters
used in step sizes (5) and in step size selection rule (11) are a = 0.001,
A = 0, 10, 100, α = 0.602, m = 10 and θ = 0.99. The gradient of the
objective function in (35) is approximated by the centered finite differences
with step h = 10−5. The estimates have been obtained using MATLAB
programming software.

Comparison of optimization methods is based on the evaluation of Mean
Square Error (MSE) and Median Square Error (MedianSE) defined by

MSE =
1

N

N
∑

k=1

(β̂k − β)TC(β̂k − β),

and

MedianSE = Median{(β̂k − β)T C(β̂k − β), k = 1, 2, ..., N},
respectively, where β̂k is the kth estimate of the parameter β.

In Table 3, Table 4 and Table 5, MSE and MedianSE for different value
of the parameter A and different initial iterations β0 in the optimization
processes are given.

Lower value of MSE or MedianSE indicates better optimization process.
As it can be seen from the results, the proposed method in this paper, SA
with adaptive step sizes (11), is more global then the classical SA method
(4), since it has better performance when the optimization process starts
far from the solution. Locally, SA method (4) gives better results, which
depend on the choice of the parameter A in the step sizes (5). SA method
(4) is very sensitive on the choice of the parameter A, which is not the
case for the proposed method in this paper, it manages to overcome this
difficulties. Methods with different choices of the parameters λkj in (11),
CCGD-1 and CCGD-2, have been equally successful with little difference
in MSEs or MedianSEs, almost always in favour of CCGD-1, except for
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MSE MedianSE

β0 = (0, 0, 0, 0, 0, 0, 0, 0)T

SAGD 0.67713284 0.65167476
CCGD-1 0.73254119 0.65512802
CCGD-2 0.73114389 0.64433737

β0 = (10, 10, 10, 10, 10, 10, 10, 10)T

SAGD 0.81613584 0.73665411
CCGD-1 0.71485402 0.66087552
CCGD-2 0.72263938 0.66571446

Table 3. MSE and MedianSE, A = 0

MSE MedianSE

β0 = (0, 0, 0, 0, 0, 0, 0, 0)T

SAGD 0.72407352 0.70555047
CCGD-1 0.74199922 * 0.67134859 *
CCGD-2 0.73055080 0.65525906

β0 = (10, 10, 10, 10, 10, 10, 10, 10)T

SAGD 1.05999336 0.99529997
CCGD-1 0.71411317 0.66605187
CCGD-2 0.72268785 0.66862433

Table 4. MSE and MedianSE, A = 10, (* calculated over
48 nondivergent runs)

MSE MedianSE

β0 = (0, 0, 0, 0, 0, 0, 0, 0)T

SAGD 1.13762219 1.17352551
CCGD-1 0.71541790 0.64763942
CCGD-2 0.72503869 0.65551539

β0 = (10, 10, 10, 10, 10, 10, 10, 10)T

SAGD 2.21081217 2.15215925
CCGD-1 0.70413645 0.63140689
CCGD-2 0.70862254 0.63606241

Table 5. MSE and MedianSE, A = 100

A = 10 and initial point β0 = (0, 0, 0, 0, 0, 0, 0, 0)T, when CCGD-1 results
in 2 out of 50 divergent runs, and bigger MSE and MedianSE.
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5. Conclusions

In this paper we have generalized a recently proposed adaptive step size
scheme that can be used in SA iterative rule, for problems in noisy envi-
ronment. Using the information from the previous steps, the scheme takes
larger steps if sufficient decrease in previous noisy function values is ob-
served, and takes zero steps if unwanted increase is observed. The step
size sequence obtained by the scheme, under common assumption, satis-
fies almost surely the main conditions for convergence. Numerical results
show that adaptive step size selection improve the optimization process and
can be successfully implemented in estimating the unknown parameters in
regression models.
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