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LONG-TERM OPERATION OF RESERVOIRS IN SERIES

VANCO KUSAKATOV

Abstract. In this paper we discuss the optimal long-term operation of mul-
tireservoir power system connected in series on a river for maximum total
benefits from the system. The paper begins with the problem formulation,
where the problem is posed as a mathematical problem. In the next section
we develop a method to solve the problem using the minimum norm formu-
lation in the framework of functional analysis optimization technique. We
use a linear storage-clevation curve and a constant water conversion factor
(MWh/m3), for modeling the hydroelectric generation and the amount of
water left in storage at the end of the optimization interval [0, K|, where K
is number of the months.

1. Problem formulation

The system under study consists of n hydroelectric power plants in series on a
river, Figure 1. We will number the installations from upstream to downstream.
The problem of the power system of Figure 1 is to determine the discharges u;, i =
1,...,n,k =1,..., K, as functions of time under the following conditions:

(1)The expected value of the water in storage at the end of the last period
studied is a maximum.

(2) The expected value of the MWh generated during the optimization inter-
val is a maximum.

(3) The water conservation equation for each reservoir is adequately described
by the following difference equations:

Tik = Tik—1+ Lik + i1k — Uik — Sik + Si—1k, 2=1,...n, k=1,...,K (1)

where z; is the volume of water in the reservoir,
I;; is the monthly inflow,
sik is the spillage.
(4) To satisfy the multipurpose stream use requirements the following oper-
ational constraints should be satisfied:

gM<zg <z, i=1,...,n, k=1,...,K (2)

ul <ug <uM, i=1,...,n, k=1,...,K (3)

where zM is the capacity of the reservoir, z]* is the minimum storage, ujy is

the minimum discharge through the turbine, and uf‘,’c! is the maximum discharge
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through the turbine. If ujx > u and z; is equal to @M then s = uip — ujy is
discharged through the spillways.

network

¢

[ Demand ]

Figure |

In mathematical terms, the long-term problem for the power system of Figure
1is to determine the discharges u;j,¢=1,...,n,k =1,..., K that maximizes the
profit function

n n, K
J = ZVi(wi,K) +ZZCkGi(uik7wi,k—l) (4)
i=1 i=1 k=1
subject to satisfying the equality constrains given by (1) and the inequality con-
strains given by (2) and (3). Here V;(z;k) is the value of water left in storage in
reservoir i at the end of the last period studied K, Gi(2; k-1, uix) is the generation
of plant i during period k in MW h and cj is the value (in money) of a MWh
produced anywhere on the river in month k.

2. Modeling of the system

The conventional approach for obtaining the equivalent reservoir and hydroplant
is based on the potential energy concept. Each reservoir on a river is mathemati-
cally represented by an equivalent potential energy balance equation.

The potential energy balance equation is obtained by multiplying both sides of
the reservoir balance-of-water equation by the water conversion factors of at-site
and downstream hydroplants. We may express the function Vi(zix) as:

n
Vi(wik) = Y hizix (5)
g=4

where h; is the average water conversion factor (MW h/Mm?) at side j. In the
above equation we assumed that the cost of this energy is one USA$/MW h (the
average cost during the year).

The generation of a hydroelectric plants is a nonlinear function of the water
discharge u;, and the net head, which itself is a function of the storage z; x—1.
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We will assume a linear relation between the storage and the head (the storage-
elevation curve is linear and the tailwater elevation is constant independently of
the discharge). We may choose:

Gi(Wik, Tik—1) = ajuik + biuikwik—1(M W h) (6)

where a; and b; are constants for the reservoir i. Now, the profit functional in
equation (4) becomes

n n n K
J = z Z hj(l?iK + Z (Aikuik + UikBik-Ti,k.—l) (7)
i=1 j=1 i=1 k=1
subject to satisfying the constraints given by (1)-(3), where A;x = a;ck,
Bir = bieg,i =1,...,m:

3. Mathematical

The reservoir dynamic equation is added to the profit functional using the
unknown Lagrange multiplier lik, and the inequality constrains (2) — (3) are added
using the Kuhn-Tucker multipliers, so that a modified functional is obtained:

n n n K
Jo(uik, wik-1) =Y Y _hjwix + Y Y {Aivik + uiBiwip-1 +
i=1 j=1 i=1 k=1
+ Xik(—Zik + @i k-1 + wic1k — wik) + (8)

+ (e — elzie + (F — Fi)uik}

Here terms explicitly independent of w;x and z;; are dropped. In the above
equation Eka’ ’ ef»‘,{ , fin and fil,‘c” are Kuhn-Tucker multipliers. These are equal to
zero if the constraints are not violated and greater than zero if the constraints are
violated.

Let R denote a set of n reservoirs, and define the n x 1 column vectors

n
H = col(H;,i € R), where H;=Y hj, (9)
Jj=1
z(k) = col(z,i € R),
u(k) = col(uik,i € R),
A(k) = col(Mik,i € R),
(k) = col(pik,i € R),
(k) = col(Yik,i € R),
where p;; = ef‘,’c’ — el ik = f{,‘é’ — fI¥, i € R, and the n x n diagonal matrix
B(k) = diag(Bik,i € R).
Furthermore, we define the n x n lower triangular matrix M by
my=-1,1€R, mjpa;j=1,j=1,...,n—L
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Then the modified functional in equation (8) becomes
K
Jo(u(k),z(k = 1)) = HTw(K) + > _{u” (£)B(k)z(k — 1) +
k=1

+ (A(k) + p(k) ek = 1) = AT (k)z (k) + (10)
+ (A(k) + MTAK) + MTu(k) + (k) Tu(k)}.
We will use the following identity:

K K
S AT (k) (k) = =AT(0)z(0) + AT (K )z (K) + STk -Da(k—1) (11
k=1 k=1

Then we can write the functional (10) as

Jo(u(k),z(k — 1)) =(H — Mk))Tz(K) + AT(0)z(0) +

K
+Y T (k) Bk)z(k - 1) +

k=1
+ AE) =AMk = 1)+ uk) Tz - 1) + (12)
+ (Ak) + MIN(k) + MT (k) + 9 (k) Tu(k)}

Define 2n x 1 column vectors

X (k) = col(z(k — 1), u(k))
R(k) = col(A(k) — Ak — 1) + p(k), A(k) + MTA(k) + MTu(k) + (k)

and 2n x 2n matrix L(k) by

B(k
T
2

L(k) = {ﬂ@ 0
Using these definitions, (12) becomes
J1(z(K), X (K)) =(H — MK))"2(K) + AT(0)2(0) +

K
+ > {X(k)TL(k)X (k) + RT (k)X (k)} (13)
=1
Equation (13) is composed of a boundary term and a discrete integral part,
which are independent of each other. To maximize Jy in equation (13), one max-.
imizes each term separately:

mazJyi(z(K), X (k) = TE;L{:g(H -~ MK))Tz(K) + 2T(0)z(0)) +

K
+ maz > {X (k)"L(k)X (k) + RT(k)X(k)}
k=1 *
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4. The Optimal Solution

There is exactly one optimal solution to the problem formulated in (14). The
boundary part is optimized when A(k) — H = 0 because §z(K ) is arbitrary and
z(0) is constant. We define a 2n x 1 vector V (k) as

V (k) = L™ k)R (k). (14
Now, the discrete integral part of equation (14) can be written as
K
J(X (k) =3 {X(k) + LV () TL(k) (X (k) + v (k) - %VT(Ic)L(,’:)‘.’(.’r)}.
k=1 :

The last term in the above equation does not depend explicitly on X (k), so it
is enough only the equation
K

BOCE) = 3K E) + 2V E)TLE)X(E) + 3V (8) (15)
k=1

to be considered. Equation (16) defines a norm. This norm is considered to be

an element of Hilbert space because X (k) is always positive. Equation (16) can
be written as

Ja(X (k) = |1 X (k) + 5V (k)| k- (16)

Maximization of J2 is mathematically equivalent to the minimization of the
norm of equation (17). The minimum of the norm in equation (17) is clearly
achieved when

1X () + SV =0 (1)

From the equations (15) and (18) we have that the optimal solution is given by

R(k) + 2L (k)X (k) = 0.
Writing the last equation explicitly and adding the reservoir dynamic equation,
one obtains the long - term optimal equations as,

—z(k) +z(k—1)+I(k) + Mu(k) + Ms(k) =0
A(k) = Ak — 1) + u(k) + B(k)u(k) =0 (15}
A(K) + MTX(k) + MTu(k) + (k) + B(k)z(k — 1) = 0.

We can now state the optimal solution of equations in component form as

—Tik + Tik—1+ ik + i1k — ik — Sik +5i-1k0, i =1,...,n,k=1,... K
Nik'= Xi—1,k + pik Fekbjuge =0, i=1,...,n, k=1,.. .| K
Ckak+Ait1,k— NikFlip1k+ ik +Vikterbizig—1=0, i=1,...,n, k=1,... K.

Also we have the following limits on the variable:
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if 25 < 2", then put z; = 21", if z;& > M then put z;, = 2M (19)

if ujp < ui", then put uz, = ul", if ugy > u then put u; = uM

Relations (20) — (21) completely specify the optimal solution.

5. Practical Application

A computer program is written to solve equations (20) iteratively under the
limits (21) using the steepest descend method. This program is applied to the
system that consists of four reservoirs connected in series on a river. The char-
acteristics of these reservoirs are given in Table 1. The optimization is done on a
monthly time basis for a period of a year.

The expected natural inflows to the sites in the year on high flows, which we
call Year 1, and the cost of the energy are given in Table 2. In Table 3 we give
the optimal discharges and the profits realized during the year of high flow. In
Table 4 we give the expected natural inflows to the sites in the year of low flows,
which we call Year 2. Also, in Table 5 we report the corresponding results obtained
for the same system during the year of low flow.

Table 1
Min. Max. Min. Max. Reservoirs constants
capacity capacity effective effective
Site  z zM  discharhe dlscharge a; b;

(Mm3]  (Mm¥ uRbm®/s] ulf [m®/s] MW h/MmP|MW h/0m?)?)

1 0 9628 0 270 11.80 1.300 x 1073

2 0 570 0 320 231.50 0.532 x 1073

3 0 50 0 320 215.82 12.667 x 1073

4 0 3420 0 380 473.00 11.173 x 1073
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Table 2

Month Ik Iok I3 T4k Ck
k [Mm3] [Mm3] [Mm3 [Mm3] [USA$/MW h)

1 828 380 161 1208 3: 12
2 829 331 132 961 3.75
3 578 224 85 810 4.12
4 494 176 68 586 5.20
) 365 95 30 402 5.68
6 333 82 36 358 5.36
7 293 68 25 323 5.12
8 319 107 79 495 4.90
9 810 483 189 980 3.32
10 1287 781 225 1437 2.90
11 1150 591 146 1302 2.85
12 824 363 132 1145 3.18
Table 3
Month Uik Uk U3k U4k profits
k [Mm3] [Mm3] [Mm3 [Mm3]  [USAS$)
1 82 268 528 708 980300
2 243 531 483 634 858930
3 1071 1295 1338 1454 1672310
4 1071 1217 1249 1567 2040840
5 968 1291 1334 1702 2471260
6 1065 1363 1413 1756 2556200
7 1039 1104 1290 1596 1852640
8 732 870 986 1120 1106010
9 548 945 1016 1321 1440070
10 306 764 1289 1349 1404850
11 0 319 467 673 723750
12 Q0 . 392 552 720 840200

Total profits: 17947360
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Table 4
Month Ik I I3p T4k Ck
k [Mm® [Mm3] [Mm3 [Mm® [USA$S/MW h)
1 568 207 129 918 3.12
2 442 193 87 592 3.75
3 460 171 54 508 4.12
4 305 127 43 411 5.20
5 224 86 33 272 5.68
6 205 73 20 223 5.36
7 208 61 12 177 5.12
8 261 90 34 245 4.90
9 498 301 108 730 3.32
10 742 474 125 930 2.90
11 624 369 91 870 2.85
12 527 229 87 882 3.18
Table 5
Month Uik Uk U3k Uqk profits
k [Mm3] [Mm3] [Mm3) [Mm3]  [USAS$)
1 0 215 334 425 502850
2 0 373 399 543 680040
3 771 942 1064 1180 . 1409300
4 660 967 1081 1221 1897510
5 768 1023 1152 1379 2171320
6 821 1065 1202 1382 2286370
7 889 1166 1244 1307 2045760
8 136 225 492 866 851270
9 0 398 484 787 712830
10 0 272 586 973 875890
11 0 0 122 0 43330
12 0 0 375 0 120370

- Tot'il‘l pr‘f)fits-:‘ __1 3596840
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6. Conclusion

In this paper an application of the minimum norm theorem to the optimization
of the total benefits from a multireservoir power system connected in series on a
river is presended. It was found that this algorithm can deal with a large-scale
power system with stochastic inflows. For obtaining suitable approximations new
optimal equations are derived; if these equations are solved forward and backward
in time, one can obtain the optimal long-term scheduling for maximum total ben-
efits from any number of series reservoirs. A program simulation of the power
system showed that the obtained mathematical formulation fitted quite well.

REFERENCES

[1] Lyra, C., Tavares, H. and Soares, S. (1980) ” Economic Operation of Large Hydrother-mal
Power Systems”, Proceedings of the IFAC Symposium, Toulouse, France.

[2] Soliman, S. A., Christensen, G. S., Abdel-Harim and M. A. (1986) ”Optimal Operation of

Multi-reservoir Power System”, Journal of Optimization Theory and Applications, Vol. 49,

No. 3.

Solimari, S. A., Christensen, G. S., (1988) ”Minimum Norm Approch to Optimal Long-Term

Opecration of Multireservoir Power System with Specified Monthly Generation”, Journal of

Optimization Theory and Applications, Vol. 12.

[4] Christensen, G. S. (1988) ”Optimal Control Applications in Electric Power system”, Plenum
Press, New York.

3

"ST. CYRIL AND METHODIUS UNIVERSITY, FACULTY OF NATURAL SCIENCES AND MATHEMAT-
1cs, INSTITUTE OF INFORMATICS, P.O. Box 162
E-mail address: vancok@pmf .ukim.edu.mk





