PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA — SÉRIE: MATHÉMATIQUES ET PHYSIQUE

 $N_2 338 - N_2 352 (1971)$

352. A PROCEDURE FOR OBTAINING RELATIONS BETWEEN THE ANGLES OF A TRIANGLE*

Živko Madevski

After accepting the paper: A family of goniometric inequalities of Bager for publication (These Publications \Re 339), the Editorial Committee received a paper of \mathbf{Z} . Madevski which deals with methods of obtaining inequalities for the elements of a triangle. Since the results of Madevski are in some connexion with those of Bager, a copy of Bager's paper was sent to Madevski with the suggestion to write for a short summary of his methods. His interesting results are to be published in more detail later. We give below the summary in question (Editorial comment).

1. Let Σ_1 and Σ_2 be two classes of triangles and f, g, h three real functions such that: if α , β , γ are angles of a triangle $\Delta_1 \in \Sigma_1$, then $f(\alpha)$, $g(\beta)$, $h(\gamma)$ are angles of a triangle $\Delta_2 \in \Sigma_2$. Then obviously, if R(x, y, z) is a generally valid relation between the angles of the triangles of the class Σ_2 , then $R(f(\alpha), g(\beta), h(\gamma))$ is a generally valid relation between the angles of the triangles of the class Σ_1 . (Of course, Σ_1 or Σ_2 , or both, may be the class of all triangles.)

So, if we can find convenient functions f, g, h, then from every known relation between the angles of a triangle, we can derive a new one.

Examples. 1° Assume that f, g, h are defined by

(1)
$$f(\alpha) = k\alpha + \lambda, \quad g(\beta) = k\beta + \mu, \quad h(\gamma) = k\gamma + \nu,$$

where λ , μ , ν and k are real numbers such that:

- (i) λ , μ , $k\pi + \lambda$, $k\pi + \mu \ge 0$,
- (ii) $\lambda + \mu$, $k\pi + \lambda + \mu \leq \pi$,
- (iii) $v = (1-k)\pi \lambda \mu$.

If α , β , γ are angles of a triangle then so are $f(\alpha)$, $g(\beta)$, $h(\gamma)$, and therefore if $R(\alpha, \beta, \gamma)$ is a generally valid relation between the angles of a tri-

^{*} Presented December 27, 1970 by D. S. MITRINOVIĆ.

angle, then $R(k\alpha + \lambda, k\beta + \mu, k\gamma + \nu)$ is also a generally valid relation between the angles of a triangle.

As a special case for k = -1/2, $\lambda = \mu = \nu = \pi/2$, we obtain the transformation σ from BAGER's paper (see these Publications No. 339, pp. 5—26).

- 2° If we want to find a transformation of the form (1) such that the class Σ_1 of acute triangles is mapped onto the class Σ_2 of all triangles, then we get that there is only one possibility for the numbers k, λ , μ , ν , namely, k=-2, $\lambda=\mu=\nu=\pi$, and this is, in fact, the transformation τ from the BAGER's paper mentioned above.
- 2. Let R(a, b, c) be a generally valid relation between the sides of a triangle, and let f, g, h be three real functions such that if α, β, γ are angles of a triangle then $f(\alpha)$, $g(\beta)$, $h(\gamma)$ are sides of a triangle; then, $R(f(\alpha), g(\beta), h(\gamma))$ is also a generally valid relation between the angles. (For example, it is known that if α, β, γ are angles of a triangle then we can take $\cos \alpha/2$, $\cos \beta/2$, $\cos \gamma/2$ as sides of a triangle.)

Prirodno-matematički fakultet Skopje, Jugoslavija