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QUASI-PERIODIC SOLUTIONS TO THE ABEL DIFFERENTIAL
EQUATION

MARIJA KUJUMDZIEVA-NIKOLOSKA AND JORDANKA MITEVSKA

Abstract. Asitis known, solving an Abel differential equation is not an easy
problem. In this paper, using the idea ([1], [2], [3]) for finding existence condi-
tions of quasi-periodic solutions for linear and nonlinear differential equations
of first and second order, we give some conditions of existence quasi-periodic
solutions with a constant quasi-period for the Abel differential equation (1)
and find them.

1. PRELIMINARY
Let the Abel differential equation
y'(x) = fa(@)y’ (@) + f2(2)y” (2) + fr(x)y(z) + fo(z), fs(z) #0 (1)

be given. We want to find a quasi-periodic solution (QPS) y = y(z) for the DE
(1), i.e. to find a solution which satisfies the relation

y(z +w) = Mz, w(z))y(e) = M2)y(z), ©,2+w e Dy, 2

where w = w(z) is called a quasi-period (QP) and A = A(z) is called a quasi-
periodic coefficient (QPC) of the function y = y(z). The following theorem holds.

Theorem 1.1. If DE (1) has QPS y =y (z) with QP w = w(z) and QPC \(z),
then y =7 (z) is also QPS to an algebraic equation with respect to y

A <t‘lrf3<x> - AQ(;z)fs(t)> ¥ (@) + Az) (%W) ~Malf 2<t)> Vi) + A

or, to the Riccati DE with respect to vy

T l_2xf3(t) " l/ 3$fi(t_) A e X
3w (5 - ¥ 23 ) v + (@ + ¥ B @) - @410 ) +

fo(x)~f0(t)> =0,t =2z +w(x)

t! f3(2) @
3@ (@) 2 o) - £0)2@+ (V@2 f60) - o)) =0, 1=z 40t@)
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Proof. Under the conditions of the theorem we form the system:

y'(z) = fa(2)y®(z) + fa(2)y*(z) + fr(2)y(z) + fo(z)
y' (1) = sy (t) + L2052 () + ALy (@) + folt) jt=atuw
y(t) = Ma)y(=) (5)

y(t) = X (@y(z) + Ao (2)

from where we get

V@) = = (@) — L@ @) — L@ - fo(@) (©
f3(z)
and
y ()= 5 (N @)y @)+ A @Y (). ™)
Substituting expressions (6) and (7) in system (5), after short transformations, we
obtain (3) and (4). O

Remark 1.1. In general, solving equations (3) and (4) is not an easy problem.
So, in this paper we consider the problem for existence of QPS to the Abel DE(1)
with a constant QP w = ¢ and a constant QPC A > 0.

2. QUASI-PERIODIC SOLUTIONS FOR CONSTANT QP AND
CONSTANT QPC

Theorem 2.1. If DE(1) has QPS y = y(z) with a constant QP w = ¢ and a
constant QPC X\ > 0, then y = y(z) is QPS to the algebraic equation

A(fs(2) = X fa())y? (2) + M fa(z) — Ao (t))y* (z) + (8)
+AU1(@) = fr(®)y(z) + (Afo(x) — fo(t)) =0
or to the Riccati DE
Mfs(z) = X fs(0)y' (@) + X (Mfa(2) f5(1) = fo(t) f3(2))y (z) + 9)
+ AN fi(2) f3(8) — fL (@) f3(2))y() + (N fo() fa(t) — folt) fa(z)) =0
Proof. Substituting w = ¢, w' =0, t =z +¢, t' =1 into (3) and (4), we obtain
(8) and (9). O
Corrolary 2.1. Let DE (1) have QPS y = y(z) with a constant QP w = ¢ and
a constant QPC X\ > 0. If the coefficients f3(x), f2(z), fi(z), fo(z) in DE (1)
are QPF's with the same QP w = ¢ as y(z) and QPC A3 = ﬁ,)\g = %,/\1,/\0
respectively, i.e. the relations

£5(8) = 3305(2), o) = £ 1o@), 1i(8) = Mfa(a), Folt) = dofol@)
are satisfied, then y = y(z) is also QPS to the equation
AL = A1) fi(z)y(z) + (A = Xo) fo(z) = 0. (10)
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Corrolary 2.2. Let DE (1) have QPS y = y(x) with a constant QP w = ¢ and
a constant QPC X\ > 0. If the coefficients f3(z), f2(x), f1(x), fo(x) in DE (1) are

QPFs with the same QP w = ¢ as §(x) and QPC A3 = A2, A1, Ao respectively,

v7
i.e. the relations
f3(t) = %fs(f)a fo(t) = Xafa(z), fr(t) = Mfi(z), fo(t) = Aofo(x)

are satisfied, then y = y(x) is also QPS to the equation
AL = M) fo(2)y” () + A1 = M) f(@)y(z) + (A = Xo) fo(z) =0 (11)

Corrolary 2.3. Let DE (1) have QPS y = y(z) with a constant QP w = ¢ and

a constant QPC X > 0. If the coefficients f3(z), fo(z), fi(z), fo(z) in DE (1) are

QPFs with the same QP w = ¢ as y(z) and QPC X3, A2, A1, Ao Tespectively, i.e.

the relations

f3(t) = A3 fa(z), fa(t) = Xafa(z), fi(t) = Aifi(2), fo(t) = Ao fo(z),

are satisfied, then y = y(x) is also QPS to the equation

AML=22X3) f3(2)y? (2) + A (1= 2AN2) f2(z)y* (2) + A (1= A1) f1 (2)y () + (A= Xo) fo(z) =0
(12)

Corrolary 2.4. Let DE (1) have QPS y = y(z) with a constant QP w = ¢ and
a constant QPC X\ > 0. If the coefficients f3(x), f2(z), f1(z), fo(z) in DE (1) are
QPFs with the same QP w = ¢ as Y(z) and QPC X3, \y = A3, A1, Ao respectively,
t.e. the relations

f3(t) = Asfs(z), f2(t) = Adsfalz), fi(t) = M fi(2), fo(t) = Xofolz)
are satisfied, then y = y(z) is also QPS to the equation

A = X A3)y' (2) + AN As — A1) f1(@)y(z) + (XA — Ao) fo(z) =0 (13)
Corrolary 2.5. Let DE (1) have QPS y = y(z) with a constant QP w = ¢ and
a constant QPC X\ > 0. If the coefficients f3(z), f2(x), fi(z), fo(z) in DE (1) are
QPF's with the same QP w = ¢ as Y(z) and QPC \3 # %,
i.e. the relations

f3(t) = A3 f3(z), fo(t) = Xafa(z), fi(t) = Mifi(z), fo(t) = Xofo(z),
are satisfied, then y = g(x) is also QPS to the equation

A2z — A2 A2 X3 — ) A3 A3 —Ao
!

Theorem 2.2. Let DE (1) have QPS y = y(z) with a constant QP w = ¢ and
a constant QPC X > 0. If the coefficients f3(z), f2(z), fi(z), fo(z) in DE (1) are
QPFs with the same QP w = ¢ as §(x) and QPC A3 = 7\15,)\2 = l,)\l =1L =2A

respectively, then DE (1) has many QPS with a constant QP w = ¢ and a constant
QPC X\ > 0.

A2, A1, Ao respectively,

fa(2)y* (z)+ fo(z)=0 (14)
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Proof. Under the conditions of the theorem, coefficients f3(z), f2(z), fi(x), fo(z)
in DE (1) satisfy the relations

f3(t) = )\1—2f3($)a fa(t) = %fQ(I)a f(t) = fi(@), fo(t) = Xfo(z),

and equations from (10) to (14) can have many QPSs, which are also QPSs to DE
(1), since

y'(t) = fs(O5° (1) = Lo(0)y* (1) — FL)y(t) = fo()/t=otc =
My'(z) = f3(2)y* (2) = fo(2)y*(2) = fi(2)y(z) — fo(z)) =X-0=0.
|

Example 2.1. Let

, e ®cosx 5 e %(cosx+sin’z—sin®z) , -
= s - Y S - Yy~ —sinzx -y +e’sine.
sin” z(1 — sin ) sin” z(1 — sin z)
—2z —z L. -

: é coszx é Cosx + sIin” r — sin” T

The coefficients f3(x) = ——5————, fo(z) = ( s - ),
sin” z(1 — sin z) sin” z(1 — sin z)

fi(z) = —sinz, fo(r) = e*sinx are QPF with the same QP w = 27 and QPCs
A3 =em =, =€ =2, A =1, A\ = ¥ = ), respectively. So,

according to the Theorem 2.2 , the given equation can have many particular QPSs.

Thus, for instance, y; = e”sinz and y, = e® are particular solutions which are
QPFs with QP w = 27 and QPC \ = ¢2".

Remark 2.1. If DE (1) has four QPSs y1(z), y2(z),y3(z),ya(z) with a constant
QP w = ¢ and a constant QPC X > 0, then from the system

fo(@) + fr(@)ys + fo(2)yf + fa(2)y} = y1(2)
foz) + fu(@)ys + f2(2)y3 + f3(2)ys = y5(
fo(z) + fi(z)ys + f2(z)y3 + f3(2)y5 = y3
fo(x) + fi(x)ya + fo(z)yi + f3(z)yi =y}

z)
(z)
(z)

coefficients f3(x), fo(x), f1(z), fo(zx) are uniquely determined by the relations:

folw) = 22, 1(e) = 2L pote) = 22, gy = 22

D’
where
1 yf Z/i)’
1 ys yg y3 1= Ys)Y1 — Y2 —Y3) Y2 — Y4 )(Y3 — Y4
Loy vi vl

is Wandermond’s determinant and
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Yi N yg vy 1y yi yz 1y yé yg
! 1 b 1

D, — y/2 Y2 y% yg,Dlzly? y% y§7D2:1y2 y/2 ?/%’

Ys Ys Yz Y3 Y3 y% y??,) Y3 Yz yg
'

vi ys Y Vi 1 vy vi v 1 ya vy v3
1wy yg 7
1 oy 3 s

Dy = 4

Tl v oo

1 v vi i

Coefficients f3(z), f2(z), f1(z), fo(x), determined above, satisfy conditions to the
Theorem 2.2.

Remark 2.2. If the DE (1) has four QPSs y1(z),y2(x), ys(x), ya(z) with a con-
stant QP w = ¢ and a constant QPC A\ > 0, then for the system

fo(z) + fi(@)yr + f2(2)y] + f3(2)yd —yi(z) =0
fo(@) + fi(@)yz + f2(2)y3 + fs(x)ys — y5(x) =0

fo(@) + fi(@)ys + fa(@)ys + fs(z)y3 — ys(z) =0 (15)
fo(z) + fi(@)ys + f2(2)yi + fa(z)yi — ya(z) =0

fo(@) + fi(z)y + f2(2)y® + fa(z)y® —y'(z) =0

we obtain the equation

TR T S - G T
1 oy ¥5 ¥ v
1 ys y3 y3 w3 |=0 (16)
1 ya i v vy
1y v v v

which satisfies conditions of the Theorem 2.2.

Theorem 2.3. Let the DE (1) have QPS y = y(x) with a constant QP w = ¢ and
a constant QPC X\ > 0 and let the coefficients fs3(z), f2(z), f1(z), fo(z) be QPFs
with the same constant QP w = ¢ and QPC A3, 3, A1, 0 = A\1, respectively.
Then

__ _fol2)
Y= " h@) (17)
if the relation
o) @Y, o (@)Y
<f1($)> - fa(z) <f1(:r)) + fo(z) (m) =0 (18)

is satisfied.

Proof. Using the conditions f3(z+4c¢) = A3 f3(z), fo(z+c) = Aafo(z), fi(z+c) =
ALfi(z), fo(z + ¢) = Ao fo(z) relations (8) and (9), and Corollaries 2.1. to 2.5. we
have:
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2
a) If A3 = :\\—1> LA = %,)\1 # 1, then from the Theorem 2.1 follows that
0 0

QPS 7y(z) to the DE(1) is also QPS to the equation
A (/\1 — 1) f] (ZL’)y + ()\0 - )\) fo('L‘) = ().

From the last equation we get

_ fo(z)
= — 19
V=-mie (19)
A= Ao : ; . Ao
where g3 = —————. Solution (19) is QPF with QP w = c and QPC A\ = —
A(l=X\) At

for which p1 = 1. Thus, from (19) we obtain (17) and (18).
b) If A3 = (;—;)2 JAL# LA # Ag,ie A # 1A # Ao, A3A2 = A2, then from
the Theorem 2.1 follows that QPS y(z) to DE(1) is also QPS to the equation
AL = A2) fo(2)y? (@) + A1 = M) fi(@)y(z) + (X = o) fo(@) =0,
whose coefficients are QPF, so its QPS y(z) is also QPS to the equation
(1= 21) A2 = M) fi(@)y(@) + (A = Xo) (Ao — A A2) fo(z) = 0.

From the last equation, we obtain

(20)
(A =) (Mo = X*X9)
A2 (1—=A1) (A2 —A\)°
QPC A\ = i—o for which p5 = 1. Thus, from (19) we obtain (17) and (18).

1

e) If Ay # 1,01 # Mo, A # A2h3 ie. A # 1,03 # A2X3, A2 # A2\, then from
the Theorem 2.1 follows that QPS y(z) to DE(1) is also QPS to the equation

AL = A23) f3(2)y® () + M1 = M) fa(@)y® () +
+ A1 = M) fi(x)y(z) + (A = Ao) fo(z) =0,
whose coefficients are QPF, so its QPS y(z) is also QPS to the equation
N (1= 2M2) (A2 = M) fa(@)y® (2) + X (1 = M) (M1 = A Xs) fi (2)y (@) +
+ (A= X0)(Xo — A3A3) fo(z) = 0,

i.e. to the equation

where poy =

Solution (20) is QPF with QP w = ¢ and

(1= M)A = X2A3) (M = M) fi(@)y(2) + (A = M) (Ao — APA3) (Ao — A2X2) fo(z) =

From the last equation we get

7= _p, 208
Yy=—us fl (ZE), (21)
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(X0 = V(Ao = X3X3) (Ao = X*X9)
AB A= DA — A2X3) (A1 — A2)
w = cand QPC A = % from where we obtain puz = 1. Thus, from (21) we get
1
(17) and (18).
d)If XAy = M3, A3 =1 #0, A # Lie M #1, A3A3 # A3, Ao = Mg,

then from the Theorem 2.1 follows that QPS 7(z) to DE (1) is also QPS to the
equation

A1 = NA3)y () + AN A3 — i) fi(2)y(z) + (WP X3 = Xo) fo(z) =
i.e.[1] to the equation

X (A = DA = XX) f1(2)y(z) + (Ao = X) (Ao = X*X3) fo(z) = 0
From the last equation we find

where p3 = Solution (21) is QPF with QP

y fo(z)
)

Solution (22) is QPF with QP w = ¢ and

j= - (22)

(A= 20) (Mo = A3)3)
(1= A0 — X2Ag)
QPC )\ = ;\\—? from where we obtain 4 = 1. Thus, from (22) we obtain (17) and
(18). )

e) If \g # (%l) C M AL A3 # A, M A Mg be B £X, M £ X #
oAz, A2)h3 # )\zothen QPS to DE (1) is also QPS to the equation

where pg =

XEX Az — A g
V() + TS @ @) + T i @(E) + Sy o) =
and
AA223 — X)) (AAg — S {p S 2\, _
B 2200 2 D ooy + 2D A m M) gy
(o= N0 ~Xo) .
N1 — gy @)=
1ie.

A2 =D (A2A3 = A1) (A1 = A Ao =N A3 A3 =X0) (Ao =A%\
E (1__3)\2/\31 . 2)fl(x):‘l“|”( | /\(13_)\20/35)0 2) o(z) = 0.

From the last equation we get

(23)

(Mo — A) (Ao — A2x2) (Ao — A3X3) Ao

N 0n = D0 = W) Or = W2h) Since QPC for y(z) is A = N
then under the given conditions we have us = 1. Now, from (23) we obtain (17)
and (18). O

where ps =
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Example 2.2. The equation

y/ — 26—5:r+3si\11' CcoS T .:‘/3 & e—2:n+sin :L'(_2 + cos ’l:) _y2 +e—z+sinm cosz-y— e® cosz
has coefficients fs(z) = 2e~5*+3%i02 . cosx, fo(z) = e 22¥8inZ . (2 4 cosz),
fiz) = e ®FSin* cosz, fo(x) = —e® - cosx, which are QPF with QP w = 27 and
QPC X = €™, A\ = €7 2™, Ay = 74" A3 = 7197 respectively. Thus, according
to the Theorem 2.3., QPS for the given equation is

f()(.l?) D S < 4 AO)
= — = (3"" 'Sm'lv w = 27(, )\ =e€ T=— .
fi(z) AL

<)
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