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ON THE MINKOWSKI DIMENSION OF CERTAIN KAKEYA

SETS

BODAN ARSOVSKI

Abstract. The Kakeya conjecture states that all compact subsets of Rn con-
taining a unit line segment in every direction have full Hausdor� dimension.
The analogue of the Kakeya conjecture with Rn replaced by Qn

p was recently

proved in [1]. An earlier draft of that article proved a special case concerning
Minkowski dimension by using a more specialized combinatorial argument.
The referees for [1] suggested that this is of independent interest, and that it
should be published as a separate article. Thus, this article documents that
argument.

1. Introduction

In 1917, S	oichi Kakeya posed the Kakeya needle problem, asking about the mini-
mum area of a region in the plane in which a needle of unit length can be rotated
around by 360◦. Besicovitch [2] proved that in a certain sense the answer is �ar-
bitrarily small�, by constructing such a region of Lebesgue measure zero. On the
other hand, Davies [3] proved that such a region must be large in a di�erent sense:
it must have Minkowski dimension 2. Subsequently, regions in Euclidean space
containing a unit line segment in every direction were dubbed Kakeya sets. The
construction of [2] immediately extends to higher dimensions, showing that any
�nite-dimensional Euclidean space contains a Kakeya set of Lebesgue measure
zero. Much more di�cult is the analogue of the result of [3] in higher dimensions:
it is the Minkowski dimension version of the Kakeya conjecture, which is one of
the most important open problems in geometric measure theory, and analysis in
general.

Conjecture A (Kakeya, Minkowski version): Let n be a positive integer. All
Kakeya sets in Rn have Minkowski dimension n.
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The Kakeya conjecure has deep connections with harmonic analysis among other
�elds, and it is open for n ⩾ 3: the state of the art is the result of Katz�Tao [8]
that all Kakeya sets in Rn have Minkowski dimension at least (2−

√
2)(n− 4) + 3.

As a possible approach to the Euclidean Kakeya conjecture, Wol� [9] suggested
the analogous question over �nite �elds, and this �nite �eld Kakeya conjecture was
proved by Dvir [5]. As noted by Ellenberg�Oberlin�Tao [6], the analogy between
the Euclidean and the �nite �eld Kakeya conjectures breaks down in that there
is no non-trivial natural notion of distance in �nite vector spaces. Therefore, the
question arises whether there is a version of the Kakeya conjecture over rings that
have multiple scales, such as the ring of p-adic integers Zp for a prime number
p, which is topologically much more similar to R than �nite �elds are (this was
originally asked by James Wright). Our main result is a proof of this version of
the Kakeya conjecture.

Theorem 1. Let p be a prime number and n a positive integer. All Kakeya sets
in Zn

p have Minkowski dimension n.

We obtain this result as the limit of the following theorem.

Theorem 2. Let p be a prime number and n and k positive integers. All Kakeya
sets in (Z/pkZ)n have size at least (kn)−npkn.

The proof involves a generalization of a recent idea of Dhar�Dvir [4], and a tensor
product trick over local rings which we suspect may be applicable to other similar
questions. The proof is surprisingly simple and elegant, and by virtue of this we
keep the article fully self-contained; in particular, we do not rely on any results
from [1] or [4].

2. Proof

Let p be a prime number, n and k be positive integers, and q = pk. Let F = Fp, and
R = Z/qZ. Let Qp denote the p-adic numbers, and Zp denote the p-adic integers.

De�nition 2.1. A Kakeya set in Rn is a subset S ⊆ Rn such that, for all x ∈ Rn,
there is a bx ∈ Rn such that bx + λx ∈ S for all λ ∈ R.

A Kakeya set in Zn
p is a subset S ⊆ Zn

p such that, for all x ∈ Zn
p , there is a bx ∈ Zn

p

such that bx + λx ∈ S for all λ ∈ Zp.

The Minkowski dimension of a subset S ⊆ Rn is dimMin S =
logp|S|
logp|R| .

Let S ⊆ Zn
p , and, for all positive integers l, let Sl be the image of S under the

projection Zn
p → (Z/plZ)n. The Minkowski dimension of S is the limit

dimMin S = lim
l→∞

dimMin Sl,

if that limit exists.
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The de�nitions in [4, 6, 7] are slightly di�erent (they only consider directions in
Pn−1(R)), but they are equivalent. It is clear that theorem 2 implies theorem 1: if
S ⊆ Zn

p is a Kakeya set, then so is each Sl, so, assuming the bound in theorem 2,

n ⩾ dimMin Sl ⩾ n

(
1−

logp(ln)

l

)
for all positive integers l

=⇒ n ⩾ lim
l→∞

dimMin Sl ⩾ n =⇒ lim
l→∞

dimMin Sl = n.

Thus our e�ort for the remainder of this article is dedicated to proving theorem 2.
Let ζ ∈ Qp be a primitive qth root of unity. Let

T = Z[z] and T = F[z]/(zq − 1) = T/(p, zq − 1).

The element t = z − 1 ∈ T is such that tq = (z − 1)q = zq − 1 = 0, so T = F[t]/(tq).
Let us de�ne the F-rank of a matrix M over T as the maximum number of F-
linearly independent columns ofM , and let us denote it by rankF M . For a positive
integer m, let Mm be the qm × qm matrix over T de�ned by

Mm =
(
z⟨u,v⟩

)
u,v∈Rm

.

So the rows ofMm are indexed by u = (u1, . . . , um) ∈ Rm, the columns are indexed
by v = (v1, . . . , vm) ∈ Rm, and the entry in row u and column v is

zu1v1+···+umvm = (1 + t)u1v1+···+umvm ∈ T .

This entry is well-de�ned since zq = 1. The following proposition is a generaliza-
tion of a result of Dhar�Dvir [4].

Proposition 2.1. All Kakeya sets in Rn have size at least rankF Mn.

Proof. Proof. Let S ⊆ Rn be a Kakeya set. Let US be the |S|×qn matrix over

Qp(ζ)[z]/(z
q − 1),

with rows indexed by s ∈ S and columns indexed by v ∈ Rn, with the entry in row
s and column v equal to

(US)s,v = ζ⟨s,v⟩ ∈ Qp(ζ) ⊂ Qp(ζ)[z]/(z
q − 1).

Let rS be the maximum number of Zp[ζ]-linearly independent columns of US . As
all entries of US belong to Qp(ζ), rS is equal to the Qp(ζ)-rank of US (seen as a
matrix over Qp(ζ)), which is at most the number of rows |S|. Since S is a Kakeya
set, for all u ∈ Rn, there is a bu ∈ Rn such that bu + λu ∈ S for all λ ∈ R. For each
u ∈ Rn, let us �x a bu ∈ Rn with this property. Let V be the qn × qn matrix over
Qp(ζ)[z]/(z

q − 1), with rows indexed by u ∈ Rn and columns indexed by v ∈ Rn,
with the entry in row u and column v equal to

Vu,v = ζ⟨bu,v⟩z⟨u,v⟩ ∈ Qp(ζ)[z]/(z
q − 1).

For all u ∈ Rn and all v ∈ Rn,

ζ⟨bu,v⟩z⟨u,v⟩ = ζ⟨bu,v⟩
∑
λ∈R

q−1∑
l=0

q−1ζλ(⟨u,v⟩−l)zl
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=
∑
λ∈R

q−1∑
l=0

q−1ζ−λlzlζ⟨bu+λu,v⟩. (2.1)

Since bu + λu ∈ S for all u ∈ Rn and all λ ∈ R, equation (2.1) implies that every
row of V is aQp(ζ)[z]/(z

q − 1)-linear combination of the rows of US . I.e., V = CUS

for some matrix C over Qp(ζ)[z]/(z
q − 1). Therefore, any non-trivial Zp[ζ]-linear

dependency of the columns of US (which is a non-zero vector c with entries in Zp[ζ]
such that USc = 0) gives a non-trivial Zp[ζ]-linear dependency of the corresponding
columns of V (since V c = CUSc = 0). In particular, the maximum number of
Zp[ζ]-linearly independent columns of V is at most rS ⩽ |S|. All entries of V
belong to the lattice Zp[ζ][z]/(z

q − 1), so we may reduce V modulo p. Reduction
modulo p maps ζ ∈ Zp[ζ] to 1, so the resulting matrix V is over F[z]/(zq − 1) = T .
To be more speci�c, V is the qn × qn matrix over T , with rows indexed by u ∈ Rn

and columns indexed by v ∈ Rn, with the entry in row u and column v equal to

V u,v = z⟨u,v⟩ ∈ T .

So V = Mn. Any non-trivial Zp[ζ]-linear dependency of the columns of V gives a
non-trivial F-linear dependency of the corresponding columns of V (as, by suitably
re-normalizing, we can ensure that some coe�cient of the Zp[ζ]-linear dependency
is a p-adic unit). So the maximum number of F-linearly independent columns of
V = Mn is at most rS ⩽ |S|, implying that rankF Mn ⩽ |S|. □

Before proceeding to the proof of theorem 2, let us prove a technical lemma con-
cerning the decomposition of a certain Vandermonde matrix.

Lemma 1. Let W be the q × q matrix over T = Z[z] de�ned by

W =
(
zij

)
i,j∈{0,...,q−1} .

There is a lower triangular matrix L over T with 1's on the diagonal, and an upper
triangular matrix U over T with jth diagonal entry (for j ∈ {0, . . . , q − 1}) equal
to

∏j−1
w=0(z

j − zw), such that W = LU .

Proof. Proof. For l ∈ {0, . . . , q − 1}, let fl ∈ T [X] be the polynomial

fl(X) =

l−1∏
w=0

(X − zw)

(so that f0(X) = 1). These polynomials are monic and

deg fl = l,

so there exist ai,l ∈ T for i, l ∈ {0, . . . , q − 1} such that ai,l = 0 when i < l, ai,i = 1
for all i ∈ {0, . . . , q − 1}, and

Xi =

i∑
l=0

ai,lfl(X)
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for all i ∈ {0, . . . , q − 1}. Let
L = (ai,l)i,l∈{0,...,q−1}, and U =

(
fl(z

j)
)
l,j∈{0,...,q−1} .

Then W = LU ; L is lower triangular, over T , and with 1's on the diagonal; for
l, j ∈ {0, . . . , q − 1} such that l > j, fl(X) is divisible by X − zj , implying that
fl(z

j) = 0, implying in turn that U is upper triangular, over T , with jth diagonal
entry (for j ∈ {0, . . . , q − 1}) equal to fj(z

j) =
∏j−1

w=0(z
j − zw). □

Proof. Proof of theorem 2. Let W,U,L be the reductions modulo (p, zq − 1) of
W,U,L from lemma 1. Then M1 = W = LU ; L is a lower triangular matrix over
T with 1's on the diagonal; and U is an upper triangular matrix over T with jth
diagonal entry (for j ∈ {0, . . . , q − 1}) equal to

U j,j =

j−1∏
w=0

(zj − zw) = (1 + t)(
j
2)

j∏
l=1

((1 + t)l − 1).

Moreover, Mn is the nth tensor power (over T ) of M1, so

Mn = M
⊗Tn
1 = (LU)⊗Tn = L

⊗Tn
U

⊗Tn
.

Then Ln = L
⊗Tn

is a lower triangular matrix over T with 1's on the diagonal, and
Un = U

⊗Tn
is an upper triangular matrix over T . In particular, Ln is invertible,

and rankF Un is at least as large as the number of non-zero diagonal entries of Un.
The invertibility of Ln implies that a vector v is a non-trivial F-linear dependency
of the columns of Un if and only if the entries of v ̸= 0 are in F and Unv = 0, if
and only if the entries of v ̸= 0 are in F and Mnv = LnUnv = 0, if and only if v is
a non-trivial F-linear dependency of the columns of Mn. Therefore,

rankF Mn = rankF Un ⩾ # of non-zero diagonal entries of Un.

The qn diagonal entries of Un are precisely the elements of the multiset{
n∏

i=1

U ji,ji | (j1, . . . , jn) ∈ {0, . . . , q − 1}n
}
.

Let J = {0, . . . , ⌈ q
kn⌉ − 1}. Suppose that j ∈ J . By using Kummer's theorem on

the p-adic valuations of binomial coe�cients, which implies that
(
l
w

)
is a unit in F

if and only if every p-adic digit of w is at most as large as the corresponding p-adic
digit of l, we can deduce that the smallest integer αl such that (1 + t)l − 1 ∈ tαlT

×

is equal to pvp(l) (whenever l ∈ {1, . . . , q − 1}). Therefore, the smallest integer βj

such that

U j,j ∈ tβjT
×

is equal to

min

{
q,

j∑
l=1

pvp(l)

}
⩽

⌊logp j⌋∑
y=0

(⌊
j

py

⌋
−
⌊

j

py+1

⌋)
py ⩽ j(1 + ⌊logp j⌋)

<
q(k + ⌊1− logp(q/j)⌋)

kn
⩽ q

n
.
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Suppose that (j1, . . . , jn) ∈ Jn. Then the smallest integer β(j1,...,jn) such that
n∏

i=1

U ji,ji ∈ tβ(j1,...,jn)T
×

is equal to

min

{
q,

n∑
i=1

βji

}
< q (since βji <

q

n
for all i ∈ {1, . . . , n}).

In particular,
∏n

i=1 U ji,ji is non-zero. So Un has at least |Jn|⩾ (kn)−nqn non-zero
diagonal entries, implying that

rankF Mn = rankF Un ⩾ (kn)−nqn = (kn)−npkn.

In light of propositon 2.1, this completes the proof. □
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