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CONCERNING REAL FUNCTIONS WITH VALUES
IN THE CANTOR SET

YU-LIN CHOU1

Abstract. This article in particular indicates that there exist at least continuum-
many "essentially nonconstant" (requiring the existence of at least two level sets
having positive finite measure) almost everywhere continuous functions from
the real field R to the Cantor ternary set C, although it is a basic fact that there
exists no nonconstant continuous function R→ C.

1. INTRODUCTION

A Cantor space (i.e. [following [3]], a topological space homeomorphic to the
Cantor ternary set), denoted C hereafter, topologized as a topological subspace of
the real field R, seems to be asymmetrically studied as the codomain of a function
on R. One apparent reason would be the basic fact that every continuous function
f : R → C is constant: If not, then the f -image f→(R) ⊂ C of R has at least two
elements; since C is Hausdorff and zero-dimensional (i.e. [following [3]], having
a basis consisting of clopen sets), it then follows that R has a nonempty clopen
proper subset, contradicting the fact that R is connected.

For our purposes, we introduce the following

Definition 1.1. Let q ≥ 2 be a positive integer; let Y ⊂ R; let f : R → Y. The func-
tion f is said to be essentially (q-)nonconstant if and only if there exist some distinct
y1, . . . , yq ∈ Y such that the f -preimage f←({yi}) of {yi} has positive finite (Lebesgue-
)measure for all 1 ≤ i ≤ q.

Thus every essentially nonconstant function is automatically a nonconstant
function.
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In what follows, we give another proof of an "almost everywhere continuous
extension" result in a suitably generic setting, which is then applied to show that
there are at least continuum-many essentially nonconstant almost everywhere
continuous functions R→ C, in dire contrast to the nonexistence of a nonconstant
continuous function R→ C.

2. RESULTS

The continuous extendability of a continuous map from a dense subspace of a
topological space to a compact Hausdorff space admits a well-known characteri-
zation (e.g., Theorem 3.2.1 in [2]). In view of the inherent restrictions in particular
due to this necessary and sufficient condition, such a continuous map need not
be continuously extendable in an automatic manner. However, one does have a
generic result (Theorem 3.2 in [1]) indicating "how continuous” an extension of
such a continuous map can be.

If f : X → Y, we denote by f→(A) the f -image of A for all A ⊂ X, and by
f←(B) the f -preimage of B for all B ⊂ Y.

We give another proof of Theorem 3.2 in [1] for compact codomains, which is
directly relevant with respect to our situation:

Proposition 2.1. Let Y be a compact Hausdorff space; let X be a topological space. If
A ⊂ X is a dense subspace, then every continuous map A → Y is extendable to some
map g : X → Y that is continuous at every point of A.

Proof. Let f : A → Y be continuous. If X is empty or A = X, then there is
certainly nothing to prove; we consider the other cases. Since Y is compact, every
net in Y has a cluster point, i.e. (following [2]), for every net (yθ)θ in Y there exists
some y ∈ Y such that every neighborhood of y contains yθ frequently in θ. On
the other hand, by the denseness assumption, for every x ∈ X \ A we can choose
some net (ax

θ )θ∈Θx in A, where Θx is nonempty, converging in X to x. Then each
net ( f (ax

θ ))θ∈Θx in Y has a cluster point in Y; for every x ∈ X \ A, let l̂imθ∈Θx f (ax
θ )

be a cluster point of the net ( f (ax
θ ))θ∈Θx by acknowledging the Axiom of Choice.

We claim that the map

g : X → Y,

{
x 7→ f (x), if x ∈ A,
x 7→ l̂imθ∈Θx f (ax

θ ), if x ∈ X \ A

is a desired extension of f over X. Let x ∈ A, and let G be a neighborhood of g(x)
in Y. Then, since Y is by using assumption in particular a regular space, we can
choose some neighborhood V of g(x) = f (x) such that cl(V) ⊂ G. In turn, we
can choose some neighborhood Wx of x in X, by the continuity of f , such that

f→(Wx ∩ A) ⊂ V.

We show that g→(Wx) ⊂ G, so that the continuity of g at x is verified. To
this end, it suffices to show that g(x′) ∈ cl(V) for all x′ ∈ Wx. Let x′ ∈ Wx. If
x′ ∈ Wx ∩ A, then g(x′) = f (x′) ∈ V, and there is nothing to prove. Suppose
x′ ∈ Wx ∩ (X \ A), and let O be a neighborhood of g(x′). Then the set Θx′(O) :=
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{θ ∈ Θx′ | f (ax′
θ ) ∈ O} is nonempty and cofinal in Θx′ by the construction of

g. Since (ax′
θ )θ∈Θx′

converges in X to x′ by definition, the neighborhood Wx of

x′ contains ax′
θ eventually in θ. But each ax′

θ ∈ A by definition; it follows that
f (ax′

θ ) ∈ V eventually in θ, and so, in particular, there exists some θ ∈ Θx′(O)

such that f (ax′
θ ) ∈ V and hence f (ax′

θ ) ∈ V ∩O. Thus g(x′) ∈ cl(V). We have
shown that g is continuous at every point of A; this completes the proof. □

We record as a relevant corollary of Proposition 2.1 the following evident mea-
sure-theoretic application:

Corollary 0.1. Let Y be a compact Hausdorff space; let X be a topological space that is
also a complete measure space with MX denoting the given complete measure and with
the given sigma-algebra including the Borel sigma-algebra of X.

If A ⊂ X is a dense co-null topological subspace (i.e., if A is a subset of X, being
dense in the topological space X and being the complement of some MX-null set in the
measure space X, which is topologized as a subspace of the topological space X), then every
continuous map A → Y can be extended to be some MX-almost everywhere continuous
map X → Y. □

We are now in a position to prove

Theorem 1. For every integer q ≥ 2, there exist at least continuum-many essentially
q-nonconstant almost everywhere continuous functions R→ C.

Proof. Denote by A the set of all irrational numbers. Since the subspace A of
R is second countable and zero-dimensional, by an elementary argument using
the basic fact that being second countable implies being Lindelöf, we can choose
some countable basis T̂A of A consisting of clopen sets in A. Upon fixing any a0 ∈
A and choosing a neighborhood G of a0 in A with positive finite measure, e.g.,
G := ]a0 − 1, a0 + 1[∩ A, we can in turn choose some element W1 of T̂A such that
W1 ⊂ G and W1 has positive finite measure in view of the countable subadditivity
of a measure.

Let q ≥ 2 be an integer; we can then choose some distinct r1, . . . , rq−1 ∈ Q such
that if tri : x 7→ ri + x on R for all 1 ≤ i ≤ q− 1 then the sets

]a0 − 1, a0 + 1[, t→r1
(]a0 − 1, a0 + 1[), · · · , t→rq−1

(]a0 − 1, a0 + 1[)

are pairwise disjoint. Thus each Wi+1 := t→ri
(W1) has the same positive finite

measure as W1 by the translation invariance of (Lebesgue) measure. Moreover, as
each tri |A is a homeomorphism of A onto A, the sets Wi are all clopen in A.

If c1 ∈ C, if ci ∈ C \ {c1, . . . , ci−1} for all 2 ≤ i ≤ q, and if c ∈ C \ {c1, . . . , cq},
define

f : A→ C,


a 7→ c1, if a ∈W1;

...
...

a 7→ cq, if a ∈Wq;
a 7→ c, if a ∈ A \ ∪q

i=1Wi.
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Since the set A \ ∪q
i=1Wi is also (cl)open in A, the map f is continuous. Then

we can choose by Proposition 2.1 some almost everywhere continuous extension
g : R → C of f . But g is essentially q-nonconstant: We have W1, . . . , Wq having
positive finite measure by construction, and we have c1, . . . , cq ∈ C being distinct;
since g←({ci}) = Wi ∪ E for some E ⊂ Q, the measure of g←({ci}) equals that of
Wi for all 1 ≤ i ≤ q.

Manifestly, given any finite subset Z of C, the set C \ Z is in bijection with R;
for, we have R being equinumerous to R \ Z and R \ Z being equinumerous to
C \ Z. Thus the choices of f as c runs through C \ {c1, . . . , cq}, with each ci and
each Wi being fixed, are at least continuum-many; the proof is complete. □
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