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ON CONSTRUCTION OF A GLOBAL NUMERICAL SOLUTION

FOR A SEMILINEAR SINGULARLY�PERTURBED REACTION

DIFFUSION BOUNDARY VALUE PROBLEM

SAMIR KARASULJI� AND HIDAJETA LJEVAKOVI�

Abstract. A class of di�erent schemes for �nding the numerical solution of
semilinear singularly�perturbed reaction�di�usion boundary�value problems
was constructed. The stability of the di�erence schemes was proved, and the
existence and uniqueness of a numerical solution were shown. After that,
the uniform convergence with respect to a perturbation parameter ε on a
modi�ed Shishkin mesh of order 2 has been proven. For such a discrete
solution, a global solution based on a linear spline was constructed, also the
error of this solution is in expected boundaries. Numerical experiments at
the end of the paper, con�rm the theoretical results. The global solutions
based on a natural cubic spline, and the experiments with Liseikin, Shishkin
and modi�ed Bakhvalov meshes are included in the numerical experiments as
well.

1. Introduction

We consider the semilinear boundary�value singularly�perturbed problem

ε2y′′ − f(x, y) = 0, x ∈ (0, 1), y(0) = y(1) = 0, (1.1a)

with the condition
∂f(x, y)

∂y
:= fy > m > 0, (1.1b)

where ε is a small positive perturbation parameter, m is a positive constant, y
is a real�valued function of x ∈ [0, 1], and f is a nonlinear function, f(x, y) ∈
Ck ([0, 1]× R) , k > 2. The problem (1.1a) under the condition (1.1b) has a unique
solution, (see Lorenz [18]). It's a well-known fact in theory that the exact solution
to (1.1a)�(1.1b) has two exponential boundary layers, i.e. near the end points
x = 0 and x = 1.

Di�erential equations like (1.1a) and similar occur in mathematical modeling of
many problems in physics, chemistry, biology, engineering sciences, economics and
even social sciences. Numerical solutions of singularly�perturbed boundary�value
problems obtained by some classical methods are usually useless. That is because
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the exact solutions of the singularly�perturbed boundary�value problems depend
on the perturbation parameter ε, but classical methods don't take into account
the in�uence of the perturbation parameter. The singularly�perturbed problems
require specially developed numerical methods in order to obtain the accuracy,
which is uniform with respect to the parameter ε. Numerical methods that act
uniformly well for all the values of the singular perturbation parameter are called
ε-uniformly convergent numerical methods.

Many authors have worked on the numerical solution of the problem (1.1a)�
(1.1b) with di�erent assumptions about the function f, as well as more general
nonlinear problems. There were many constructed ε�uniformly convergent dif-
ference schemes of order 2 and higher (Herceg [2], Herceg, Surla and Rapaji¢ [3],
Herceg and Miloradovi¢ [4], Herceg and Herceg [5], Kopteva and Linÿ [8], Kopteva
and Stynes [9, 10], Kopteva, Pickett and Purtill [11], Linÿ, Roos and Vulanovi¢ [13],
Sun and Stynes [21], Stynes and Kopteva [22], Surla and Uzelac [23], Vulanovi¢
[24, 25, 26, 27, 29], etc.

In the paper [1] Boglaev introduced a new method for �nding the numerical
solution of the problem (1.1a)�(1.1b), using the representation of the exact problem
to (1.1a)�(1.1b) via the Green function. In this paper we use this method to
construct a new di�erent scheme.

2. Theoretical background

The estimates of solution's derivatives are a very important tool in the analysis
of numerical methods considering the singularly�perturbed boundary�value prob-
lems. The construction of layer�adapted meshes is based on these estimates, also
in the sequel they will be used in the analysis of the consistency. Bearing in mind
the above, we state the following theorem about a decomposition of the solution y
to a layer component s and a regular component r and the appropriate estimates.

Theorem 1. [24] The solution y to problem (1.1a)�(1.1b) can be represented in
the following way:

y = r + s,

where for j = 0, 1, ..., k + 2 and x ∈ [0, 1] the following inequalities hold∣∣∣r(j)(x)∣∣∣ ≤ C, (2.1)

and ∣∣∣s(j)(x)∣∣∣ ≤ Cε−j (e− xε√m + e−
1−x
ε

√
m
)
. (2.2)

2.1. Layer�adapted mesh. It's a well�known that the exact solution to prob-
lems like (1.1a)�(1.1b) changes rapidly near the end points x = 0 and x = 1. Many
meshes have been constructed for �nding the numerical solution of problems that
have a layer or layers of an exponential type. In the present paper we shall use
three di�erent meshes. We will get these meshes 0 = x0 < x1 < . . . < xN = 1, by
using appropriate generating functions, i.e. xi = ψ(i/N). The generating function
are constructed as follows.
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Let N + 1 be the number of mesh points, q ∈ (0, 1/2) mesh parameter. De�ne
the Shishkin mesh transition point by

λ := min

{
2ε lnN√

m
,
1

4

}
. (2.3)

The �rst mesh we will use in the sequel is a modi�ed Shishkin mesh proposed by
Vulanovi¢ [28]. The generating function for this mesh is

ψ(t) =


4λt, t ∈ [0, 1/4],

p(t− 1/4)3 + 4λt, t ∈ [1/4, 1/2],

1− ψ(1− t), t ∈ [1/2, 1],

(2.4)

where p is chosen so that ψ(1/2) = 1/2, i.e. p = 32(1−4λ). Note that ψ ∈ C1[0, 1]
with ‖ψ′‖∞6 C, ‖ψ′′‖∞6 C. Therefore the mesh size hi = xi+1−xi, i = 0, . . . N−1
satis�es (see [14])

hi =

∫ (i+1)N

i/N

ψ′(t) d t 6 CN−1, (2.5)

|hi+1 − hi| =

∣∣∣∣∣
∫ i/N

(i−1)/N

∫ t+1/N

t

ψ′′(s) d s

∣∣∣∣∣ 6 CN−2. (2.6)

The second mesh is the Shishkin mesh [20]. The generating function for this mesh
is

ψ(t) =


4λt, t ∈ [0, 1/4]

λ+ 2(1− 2λ)(t− 1/4), t ∈ [1/2, 1/4]

1− ψ(1− t), t ∈ [1/2, 1].

(2.7)

The third mesh is the modi�ed Bakhvalov mesh also proposed by Vulanovi¢ [24].
The generating function for this mesh is

ψ(t) =


µ(t) := aεt

q−t , t ∈ [0, α],

µ(α) + µ′(α)(t− α), t ∈ [α, 1/2],

1− ψ(1− t), t ∈ [1/2, 1],

(2.8)

where a and q are constants, independent of ε, such that q ∈ (0, 1/2), a ∈ (0, q/ε),
and additionally a

√
m > 2. The parameter α is the abscissa of the contact point

of the tangent line from (1/2, 1/2) to µ(t), and its value is

α =
q −

√
aqε(1− 2q + 2aε)

1 + 2aε
.

The fourth mesh is proposed by Liseikin [15, 16], and we will use its modi�cation
from [17]. The generating function for this mesh is
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ψ(t) =



c1ε
k((1− dt)−1/a − 1), 0 6 t 6 1/4,

c1[ε
kan/(1+na) − εk + d 1

aε
ka(n−1)/(1+na)(t− 1/4)

+ 1
2d

2 1
a (

1
a + 1)εka(n−2)/(1+na)(t− 1/4)2

+c0(t− 1/4)3], 1/4 6 t 6 1/2,

1− ψ(1− t), 1/2 6 t 6 1,
(2.9)

where d = (1− εka/(1+na))/(1/4), a is a positive constant subject to a ≥ m1 > 0,

and a = 1, c0 > 0, n = 2, k = 1, c0 = 0, and
1

c1
= 2

[
εkan/(1+na) − εk

+
d

4a
εka(n−1)/(1+na) +

d2

2

1

a
( 1a + 1)εka(n−2)/(1+na)(1/4)2 + c0(1/4)

3

]
is chosen here.

3. Difference scheme

We will consider an arbitrary mesh with mesh points

0 = x0 < x1 < . . . < xN = 1,

and let hi = xi+1−xi, i = 0, 1, . . . , N −1. In constructing a new di�erence scheme
for the problem (1.1a)�(1.1b) the following scheme from Boglaev [1] will be used

β

sinh(βhi−1)
yi−1 −

(
β

tanh(βhi−1)
+

β

tanh(βhi)

)
yi +

β

sinh(βhi)
yi+1

=
1

ε2

[∫ xi

xi−1

uIIi−1ψ(s, y) d s+

∫ xi+1

xi

uIiψ(s, y) d s

]
, (3.1)

i = 1, 2, . . . , N − 1, y0 = yN = 0, where

ψ(s, y) = f(s, y)− γy, β =

√
γ

ε
, (3.2)

and the functions uIi , u
II
i are the solutions of the boundary�value problems

ε2u′′i − γui = 0 on (xi, xi+1) ,
ui(xi) = 1, ui(xi+1) = 0,

i = 0, 1, ..., N − 1,
and

ε2u′′i − γui = 0 on (xi, xi+1) ,
ui(xi) = 0, ui(xi+1) = 1,

i = 0, 1, ..., N − 1,

respectively.
We can't calculate the integrals in (3.1) because we don't know the exact solu-

tion y to the problem (1.1a)�(1.1b). The next step is to approximate the function
ψ by a constant value. Approximations of the function ψ are

ψ−i = (1− t)ψ(xi−1, y(xi−1)) + tψ(xi, y(xi)), x ∈ [xi−1, xi], (3.3)

ψ+
i = tψ(xi, y(xi)) + (1− t)ψ(xi+1, y(xi+1)), x ∈ [xi, xi+1], t ∈ [0, 1]. (3.4)



ON CONSTRUCTION OF A GLOBAL NUMERICAL SOLUTION. . . 135

By using the approximations (3.3), (3.4) into (3.1), after calculating the integrals
and some computing, and taking in account that∫ xi

xi−1

uIIi−1 d s =
cosh(βhi−1)− 1

β sinh(βhi−1)
,∫ xi+1

xi

uIi d s =
cosh(βhi)− 1

β sinh(βhi)
,

we get the di�erence scheme

(1− t) cosh(βhi−1) + t

sinh(βhi−1)
(yi−1 − yi)−

(1− t) cosh(βhi) + t

sinh(βhi)
(yi − yi+1)

− (1− t)fi−1 + tfi
γ

· cosh(βhi−1)− 1

sinh(βhi−1)
− tfi + (1− t)fi+1

γ
· cosh(βhi)− 1

sinh(βhi)
= 0,

(3.5)

where i = 1, 2, . . . , N − 1, fk = f(xk, yk), k ∈ {i− 1, i, i+ 1}, and t ∈ [0, 1].

4. Stability

The di�erence scheme (3.5) generates a nonlinear system. A goal of this section
is to show that this system has a unique solution. We are going to construct a
discrete operator T, and show that this operator is inverse-monotone as well, which
implies that our numerical method is stable, and the numerical solution exists and
it is unique.

Let us set the discrete operator

Tu = (Tu0, Tu1, . . . , TuN )T , (4.1)

where

Tu0 =− u0,

Tui =
γ

cosh(βhi−1)−1
sinh(βhi−1)

+ cosh(βhi)−1
sinh(βhi)

·
{
(1− t) cosh(βhi−1) + t

sinh(βhi−1)
(ui−1 − ui)−

(1− t) cosh(βhi) + t

sinh(βhi)
(ui − ui+1)

− (1− t)fi−1 + tfi
γ

· cosh(βhi−1)− 1

sinh(βhi−1)
− tfi + (1− t)fi+1

γ
· cosh(βhi)− 1

sinh(βhi)

}
= 0, (4.2)

i = 1, . . . , N − 1,

TuN =− uN , and fk = f(xk, uk), k ∈ {i− 1, i, i+ 1}.
Obviously, it is true that

Ty = 0, (4.3)

where y = (y0, y1, . . . , yN )T is the numerical solution of the problem (1.1a)�(1.1b),
obtained by using the di�erence scheme (3.5). Now, we can state and prove the
theorem of stability.
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Theorem 2. The discrete problem (4.1)�(4.3) has a unique solution y for γ > fy.
Moreover, for every v, w ∈ RN+1 we have the following stability inequality

‖v − w‖6 C‖Tv − Tw‖. (4.4)

Proof. We use a well known technique from [27] to prove the �rst statement of
the theorem. The proof of existence and uniqueness of the solution of the discrete
problem Ty = 0 is based on the proof of the relation: ‖(T ′y)−1‖6 C, where T ′

is the Fréchet derivative of T. The Fréchet derivative H := T ′(y) is a tridiagonal
matrix. Let H = [hij ]. The non-zero elements of this tridiagonal matrix are

h1,1 =hN+1,N+1 = −1 < 0,

hi,i−1 =Λ ·

[
(1− t) cosh(βhi−1) + t

sinh(βhi−1)
−

∂f
∂yi−1

γ
· (1− t)(cosh(βhi−1)− 1)

sinh(βhi−1)

]
,

hi,i+1 =Λ ·

[
(1− t) cosh(βhi) + t

sinh(βhi)
−

∂f
∂yi+1

γ
· (1− t)(cosh(βhi)− 1)

sinh(βhi)

]
,

hi,i =− Λ ·
[
(1− t) cosh(βhi−1) + t

sinh(βhi−1)
+

(1− t) cosh(βhi) + t

sinh(βhi)

+t

∂f
∂yi

γ
· cosh(βhi−1)− 1

sinh(βhi−1)
+ t

∂f
∂yi

γ
· cosh(βhi)− 1

sinh(βhi)

]
, i = 2, . . . , N,

(4.5)

where Λ =
γ

cosh(βhi−1)−1
sinh(βhi−1)

+
cosh(βhi)− 1

sinh(βhi)

. From (4.5), it's obvious that

hi,i−1 > 0, hi,i+1 > 0, hi,i < 0,

and

|hi,i| − |hi,i−1| − |hi,i+1| > m,
so we can conclude that H is an M�matrix, and �nally we obtain

‖H−1‖6 1

m
. (4.6)

Using Hadamard's theorem ([19, p 137]) we get that T is a homeomorphism. Since
clearly RN+1 is non�empty and 0 is the only image of the mapping T, we have
that (4.3) has a unique solution.

The proof of second statement of the Theorem 4.4 is based on a part of the

proof of Theorem 3 from [2]. The following is true Tv − Tw = (T ′ξ)
−1

(v − w)
for some ξ = (ξ0, ξ1, . . . , ξN )T ∈ RN+1. Therefore v−w = (T ′ξ)

−1
(Tv− Tw) and

�nally due to inequality (4.6) we have that

‖v − w‖= ‖(T ′ξ)−1 (Tv − Tw)‖6 1

m
‖Tv − Tw‖.

�
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5. Uniform convergence

The di�erence scheme (3.5) can be written in the following form

(1− t)
[
cosh(βhi−1)− 1

sinh(βhi−1)
(yi−1 − yi)−

cosh(βhi)− 1

sinh(βhi)
(yi − yi+1)

]
+

yi−1 − yi
sinh(βhi−1)

−
yi − yi+1

sinh(βhi)

− (1− t)fi−1 + tfi
γ

· cosh(βhi−1)− 1

sinh(βhi−1)
− tfi + (1− t)fi+1

γ
· cosh(βhi)− 1

sinh(βhi)

]
= 0,

(5.1)

i = 1, . . . , N − 1.
In order to prove the Theorem of convergence, we need three estimates given

in the next lemmas.

Lemma 1. [6] Assume that ε 6 C
N . In the part of the modi�ed Shishkin mesh from

Section 2.1 when xi, xi±1 ∈ [xN/4−1, λ] ∪ [λ, 1/2], we have the following estimate
(i = N/4, . . . , N/2− 1)∣∣∣∣∣∣

cosh(βhi−1)−1
sinh(βhi−1)

(y(xi−1)− y(xi))− cosh(βhi)−1
sinh(βhi)

(y(xi)− y(xi+1))

cosh(βhi−1)−1
sinh(βhi−1)

+ cosh(βhi)−1
sinh(βhi)

∣∣∣∣∣∣ 6 C

N2
.

Lemma 2. [6] Assume that ε 6 C
N . In the part of the modi�ed Shishkin mesh from

Section 2.1 when xi, xi±1 ∈ [xN/4−1, λ] ∪ [λ, 1/2], we have the following estimate∣∣∣∣∣∣
y(xi−1)−y(xi)
sinh(βhi−1)

− y(xi)−y(xi+1)
sinh(βhi)

cosh(βhi−1)−1
sinh(βhi−1)

+ cosh(βhi)−1
sinh(βhi)

∣∣∣∣∣∣ 6 C

N2
, i = N/4, . . . , N/2− 1.

Lemma 3. Assume that ε 6 C
N . In the part of the modi�ed Shishkin mesh from

Section 2.1 when xi, xi±1 ∈ [xN/4−1, λ] ∪ [λ, 1/2], we have the following estimate

γ
cosh(βhi−1)−1
sinh(βhi−1)

+ cosh(βhi)−1
sinh(βhi)

∣∣∣∣ (1− t)f(xi−1, y(xi−1)) + tf(xi, y(xi))

γ

· cosh(βhi−1)− 1

sinh(βhi−1)
− tf(xi, y(xi)) + (1− t)f(xi+1, y(xi+1))

γ
· cosh(βhi)− 1

sinh(βhi)

∣∣∣∣
6

C

N2
, i = N/4, . . . , N/2− 1. (5.2)

Proof. Taking into consideration the assumption ε 6 C
N , the equality ε

2y′′(xi) =
f(xi, y(xi)), and the Theorem of decomposition, we obtain

γ
cosh(βhi−1)−1
sinh(βhi−1)

+ cosh(βhi)−1
sinh(βhi)

∣∣∣∣ (1− t)f(xi−1, y(xi−1)) + tf(xi, y(xi))

γ

· cosh(βhi−1)− 1

sinh(βhi−1)
− tf(xi, y(xi)) + (1− t)f(xi+1, y(xi+1))

γ
· cosh(βhi)− 1

sinh(βhi)

∣∣∣∣
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6 |(1− t)f(xi−1, y(xi−1)) + 2tf(xi, y(xi)) + (1− t)f(xi+1, y(xi+1))|
6 ε2 [(1− t) (|r′′(xi−1)|+ |s′′(xi−1)|)

+2t (|s′′(xi)|+ |r′′(xi)|) + (1− t) (|s′′(xi+1)|+ |r′′(xi+1)|)]

6 C1ε
2

(1− t)
2 +

e−
xi−1
ε

√
m

ε2
+
e
−
xi+1

ε
√
m

ε2

+ 2t

(
1 +

e−
xi
ε

√
m

ε2

)
6 C

(
ε2 +

1

N2

)
, i = N/4, . . . , N/2− 1. (5.3)

�

Theorem 3. The discrete problem (4.1)�(4.3) on the modi�ed Shishkin mesh (2.4)
from Section 2.1 is uniformly convergent with respect to ε and

max
i
|y(xi)− yi| 6 C



(
ln2N

)
/N2, i = 0, . . . , N/4− 1,

1/N2, i = N/4, . . . , 3N/4,(
ln2N

)
/N2, i = 3N/4 + 1, . . . , N,

where y(xi) is the value of the exact solution, yi is the value of the numerical
solution of the problem (1.1a)�(1.1b) in the mesh point xi, respectively, and C > 0
is a constant independent of N and ε.

Proof.
Case 0 6 i < N/4− 1. Here hi−1 = hi and hi = O(ε lnN/N), thus we have

(Ty)i =
γ

cosh(βhi−1)−1
sinh(βhi−1)

+ cosh(βhi)−1
sinh(βhi)[

(1− t) cosh(βhi−1) + t

sinh(βhi−1)
(y(xi−1)− y(xi))

− (1− t) cosh(βhi) + t

sinh(βhi)
(y(xi)− y(xi+1))

− (1− t)f(xi−1, y(xi−1)) + tf(xi, y(xi))

γ
· cosh(βhi−1)− 1

sinh(βhi−1)

− tf(xi, y(xi)) + (1− t)f(xi+1, y(xi+1))

γ
· cosh(βhi)− 1

sinh(βhi)

]
=

γ

2(cosh(βhi)− 1)
{t [y(xi−1)− 2y(xi) + y(xi+1)

− 2f(xi, y(xi))

γ
(cosh(βhi)− 1)

]
+ (1− t) [cosh(βhi) (y(xi−1)− 2y(xi) + y(xi+1))
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−f(xi−1, y(xi−1)) + f(xi+1, y(xi+1))

γ
· (cosh(βhi)− 1)

]}
=

γ

2(cosh(βhi)− 1){
t

[
y(xi−1)− 2y(xi) + y(xi+1)−

2ε2y′′(xi)

γ
(cosh(βhi)− 1)

]
+ (1− t) [cosh(βhi) (y(xi−1)− 2y(xi) + y(xi+1))

−ε2 y
′′(xi−1) + y′′(xi+1)

γ
· (cosh(βhi)− 1)

]}
.

Using Taylor's expansions

y(xi−1)− 2y(xi) + y(xi+1) = y′′(xi)h
2
i +

y(iv)(ξ−i ) + y(iv)(ξ+i )

24
h4i ,

y′′(xi−1) + y′′(xi+1) = 2y′′(xi) +
y(iv)(η−i ) + y(iv)(η+i )

2
h2i ,

cosh(βhi) = 1 +
β2h2i
2

+O
(
β4h4i

)
,

ξ−i ∈ (xi−1, xi), ξ
+
i ∈ (xi, xi+1), η

−
i ∈ (xi−1, xi), η

+
i ∈ (xi, xi+1), we get

(Ty)i =
γ · t

β2h2i + 2O(β4h4i )

[
y′′(xi)h

2
i +

y(iv)(ξ−i ) + y(iv)(ξ+i )

24
h4i

−2ε2y′′(xi)

γ

(
β2h2i
2

+O(β4h4i )

)]
+

γ · (1− t)
β2h2i + 2O(β4h4i )

[(
y′′(xi)h

2
i +

y(iv)(ξ−i ) + y(iv)(ξ+i )

24
h4i

)
·
(
1 +

β2h2i
2

+O(β4h4i )

)

− ε2
2y′′(xi) +

y(iv)(η−i )+y(iv)(η+i )

2

γ

(
β2h2i
2

+O(β4h4i )

)
=

γ · t
β2h2i + 2O(β4h4i )

[
y(iv)(ξ−i ) + y(iv)(ξ+i )

24
h4i −

2ε2y′′(xi)

γ
O(β4h4i )

]
+

γ · (1− t)
β2h2i + 2O(β4h4i )

[
y(iv)(ξ−i ) + y(iv)(ξ+i )

24
h4i

+

(
β2h2i
2

+O(β4h4i )

)(
y′′(xi)h

2
i +

y(iv)(ξ−i ) + y(iv)(ξ+i )

24
h4i

)
− 2ε2y′′(xi)

γ
· O(β4h4i )

+ε2
y(iv)(η−i ) + y(iv)(η+i )

2γ
h2i

(
β2h2i
2

+O(β4h4i )

)]
, (5.4)
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and �nally

|(Ty)i| 6
(
C ln2N

)
/N2, i = 0, 1, . . . , N/4− 1. (5.5)

Case N/4 6 i < N/2. Due to (5.1) we have the next inequality

|(Ty)i| 6
γ

cosh(βhi−1)−1
sinh(βhi−1)

+ cosh(βhi)−1
sinh(βhi)

·
[
(1− t)

∣∣∣∣cosh(βhi−1)− 1

sinh(βhi−1)
(y(xi−1)− y(xi))

−cosh(βhi)− 1

sinh(βhi)
(y(xi)− y(xi+1))

∣∣∣∣
+

∣∣∣∣y(xi−1)− y(xi)sinh(βhi−1)
− y(xi)− y(xi+1)

sinh(βhi)

∣∣∣∣
+

∣∣∣∣ (1− t)f(xi−1, y(xi−1)) + tf(xi, y(xi))

γ
· cosh(βhi−1)− 1

sinh(βhi−1)

∣∣∣∣
+

∣∣∣∣ tf(xi, y(xi)) + (1− t)f(xi+1, y(xi+1))

γ
· cosh(βhi)− 1

sinh(βhi)

∣∣∣∣] ,
and according to Lemma 1, Lemma 2 and Lemma 3 we obtain

|(Ty)i| 6 C/N2, i = N/4, . . . , N/2− 1. (5.6)

Case i = N/2. This case is trivial, because hN/4−1 = hN/4 and the in�uence of
the layer component s is negligible.

Collecting (5.5), (5.6) and taking into account Case i = N/2, we have proven the
theorem. �

6. Global solution

In the paper [7] a global numerical solution was constructed, using a spline in
tension, and the authors proved the uniform convergence of order 1 for this solution
on the modi�ed Shishkin mesh generated by (2.4). After that, they repaired the
global numerical solution on [λ, 1 − λ] and achieved the uniform convergence of
order 2. That repaired global solution is composed of exponential and linear
functions. In the sequel we avoid exponential functions and give a global numerical
solution composed by linear functions. We will also include a global solution
obtained by using a natural cubic spline in the numerical experiments, because
this spline is the lowest degree spline with a continuous second derivative.
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Linear spline. Let the global numerical solution to the problem (1.1a)�(1.1b) has
the form

P (x) =



p1(x), x ∈ [x0, x1],
p2(x), x ∈ [x1, x2],

...
pi(x), x ∈ [xi−1, xi],

...
pN (x), x ∈ [xN−1, xN ],

(6.1)

where

pi(x) =


yi − yi−1
xi − xi−1

(x− xi−1) + yi−1, x ∈ [xi−1, xi],

0, x /∈ [xi−1, xi],

(6.2)

and i = 1, 2, . . . , N.

Theorem 4. The following estimate of the error holds

max
x∈[0,1]

∣∣y(x)− P (x)∣∣ 6 (C ln2N
)
/N2, (6.3)

where y is the exact solution to the problem (1.1a)�(1.1b) and P is the global
numerical solution (6.1).

Proof. We divide this proof in three parts, [0, λ], [λ, xN/4+1] and [xN/4+1, 1/2].

The proof is analogues on [1/2, 1]. The proof is based on the inequality ‖P −
y‖∞6 ‖P − P‖∞+‖P − y‖∞, and a theorem on the interpolation error and its
corollaries. For our purpose we use [12, Example 8.12]. By P we designate a
piecewise polynomial obtained in the same way like P , but P passes trough the
points with the coordinates (xi−1, y(xi−1)), (xi, y(xi)), i = 1, 2, . . . , N ; instead of
(xi−1, yi−1), (xi, yi+1), i = 1, 2, . . . , N,

P (x) =



p1(x), x ∈ [x0, x1],
p2(x), x ∈ [x1, x2],

...
pi(x), x ∈ [xi−1, xi],

...
pN (x), x ∈ [xN−1, xN ],

(6.4)

where

pi(x) =


yi − yi−1
xi − xi−1

(x− xi−1) + yi−1, x ∈ [xi−1, xi],

0, x /∈ [xi−1, xi],

(6.5)

and i = 1, 2, . . . , N.
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Taking into account the constructions (6.1), (6.4) and Theorem 3, the following is
true

‖P − P‖∞6
(
C ln2N

)
/N2, x ∈ [0, 1]. (6.6)

The �rst part is on the subinterval [0, λ], this one corresponds with the mesh
when i = 1, 2, . . . , N/4. Here, the mesh is equidistant i.e. hi−1 = hi, and hi =
O (ε lnN/N) . Using Theorem 1, [12, Example 8.12], hi = O (ε lnN/N) we have
that

|y(x)− pi(x)|6
h2i
8

max
ξ∈[xi−1,xi]

|y′′(ξ)| 6 C1
ε2 ln2N

N2
max

ξ∈[xi−1,xi]
|s′′(ξ) + r′′(ξ)|

6C2
ε2 ln2N

N2
max

ξ∈[xi−1,xi]

∣∣∣ε−2 (e− ξε√m + e−
(ξ−1)
ε

√
m
)
+ r′′(ξ)

∣∣∣
6C2

ε2 ln2N

N2
(ε−2 + C3) 6

C ln2N

N2
, i = 1, 2, . . . , N/4. (6.7)

The remaining part of the proof, i.e. for x ∈ [λ, xN/4+1] ∪ [xN/4+1, 1/2] which
corresponds with the mesh for i = N/4, N/4+ 1, . . . , N/2, is constructed as in [7].

For i = N/4 + 1, . . . , N/2, the mesh isn't equidistant but holds hi = O(1/N).
According to the Theorem 1, to the Theorem 3, [12, Example] and the features of
the mesh we obtain

|y(x)− pi(x)| 6
h2i
8

max
ξ∈[xN/4+1,1/2]

|y′′(ξ)| 6 C

N2
. (6.8)

On [λ, xN/4 + 1], according to the Theorem 1 we obtain

y − pi(x) =y −
yi − yi−1
xi − xi−1

(x− xi−1) + yi−1

=s− si − si−1
xi − xi−1

(x− xi−1) + si−1 + r − ri − ri−1
xi − xi−1

(x− xi−1) + ri−1.

For the layer component s, based on the estimate (2.2), we have∣∣∣∣s− si − si−1
xi − xi−1

(x− xi−1) + si−1

∣∣∣∣ 6 |s|+|si+1 − si|+|si|

6 C1

(
e−

xi−1
ε

√
m + e−

xi−1−1

ε

√
m
)
6

C

N2
. (6.9)

For the regular component r, we apply again the estimate from [12, Example 8.12],
the estimate (2.1), and we obtain∣∣∣∣r − ri − ri−1

xi − xi−1
(x− xi−1) + ri−1

∣∣∣∣ 6 h2i−1
8

max
ξ∈[xi−1,xi]

|r′′(ξ)| 6 C

N2
. (6.10)

Now, collecting (6.6), (6.7), (6.8), (6.9) and (6.10), the statement of the theorem
is therefore proven. �
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Cubic spline. In the numerical experiments we will use a natural cubic spline as
a global solution. We construct it in the way as follows: design the natural cubic
spline by C,

C(x) = Ci(x), x ∈ [xi, xi+1], i = 0, 1, . . . , N − 1, (6.11)

where Ci are the cubic functions

Ci(x) =Mi
(xi+1 − x)3

6hi+1
+Mi+1

(x− xi)3

6hi+1

+

[
yi+1 − yi
hi+1

− hi+1

6
(Mi+1 −Mi)

]
(x− xi) + yi −Mi

h2i+1

6
, (6.12)

the moments Mi := C ′′i (xi), i = 1, N − 1 are obtained from the system

hi
6
Mi−1 +

hi + hi+1

3
Mi +

hi+1

6
Mi+1 =

yi+1 − yi
hi+1

−
yi − yi−1

hi
, i = 1, . . . , N − 1,

(6.13)
and M0 := C ′′0 (x0) = 0, MN := C ′′N−1(xN ) = 0.

7. Numerical experiments

In this section we conduct numerical experiments in order to con�rm the the-
oretical results, i.e. to con�rm the accuracy of the di�erent scheme (3.5) on the
meshes (2.7), (2.4), (2.8) and (2.9).

Example 1: We consider the following boundary value problem

ε2y′′ = y + cos2 πx+ 2ε2π2 cos2 πx on (0, 1) , (7.1)

y(0) = y(1) = 0. (7.2)

The exact solution of this problem is

y(x) =
e−

x
ε + e

−(1−x)
ε

1 + e−
1
ε

− cos2 πx.

The nonlinear system was solved using the initial condition y0 = −0.5 and the
value of the constant γ = 1. Because of the fact that the exact solution is known,
we compute the error EN and the rate of convergence Ord in the usual way

EN = ‖y − yN‖∞, Ord =
lnEN − lnE2N

ln(2k/(k + 1))
, (Shishkin),

Ord =
lnEN − lnE2N

ln 2
, (Bakhvalov,Liseikin)

where N = 2k, k = 4, 5, . . . , 12, and y is the exact solution of the problem (1.1a)�
(1), while yN is an appropriate numerical solution of (4.1). The graphics of the
numerical and exact solutions, for various values of the parameter ε are on Figure 1
(left), while fragments of these solutions are on Figure 1 (right). The values of EN
and Ord are in Tables 1. The graphics of the exact and global solution obtained
by using a linear spline, and the corresponding error are shown on Figure 2, while
the graphics of the exact and global solution obtained by using a natural cubic
spline, and the corresponding error are shown on Figure 3.
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Figure 1. Exact and numerical solutions (left), layer near x = 0 (right)
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Figure 2. Exact, discrete and global numerical solutions (left
up), error (right up�N = 16, left down�N = 32, right down�
N = 64)
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2−5 2−10 2−20 2−30 2−40

N En Ord En Ord En Ord En Ord

24 1.015e-1 2.08 1.255e-1 2.67 1.278e-1 2.65 1.278e-1 2.65 1.278e-1 2.65

25 3.811e-2 2.83 3.570e-2 2.65 3.666e-2 2.64 3.666e-2 2.64 3.666e-2 2.64

26 8.956e-3 2.87 9.194e-3 2.20 9.515e-3 2.26 9.515e-3 2.26 9.515e-3 2.26

27 1.900e-3 2.74 2.804e-3 1.99 2.803e-3 1.99 2.803e-3 1.99 2.804e-3 1.99

28 4.099e-4 2.61 9.198e-4 2.00 9.196e-4 2.00 9.196e-4 2.00 9.196e-4 2.00

29 9.104e-5 2.52 2.911e-4 2.00 2.911e-4 2.00 2.911e-4 2.00 2.911e-4 2.00

210 2.069e-5 2.42 8.987e-5 2.00 8.986e-5 2.00 8.986e-5 2.00 8.986e-5 2.00

211 4.851e-6 2.33 2.719e-5 2.00 2.719e-5 2.00 2.719e-5 2.00 2.719e-5 2.00

212 1.180e-6 - 8.091e-6 - 8.090e-6 - 8.090e-6 - 8.090e-6 -

mesh (2.7)

24 1.944e-1 2.29 2.356e-1 1.80 2.408e-1 1.76 2.408e-1 1.766 2.408e-1 1.76

25 6.598e-2 3.06 1.010e-1 2.20 1.049e-1 2.17 1.050e-1 2.17 1.050e-1 2.17

26 1.377e-2 3.13 3.276e-2 2.36 3.450e-2 2.34 3.450e-2 2.34 3.450e-2 2.34

27 2.547e-3 2.76 9.157e-3 2.40 9.768e-3 2.37 9.769e-3 2.37 9.769e-3 2.37

28 5.413e-4 2.57 2.381e-3 2.42 2.581e-3 2.36 2.581e-3 2.36 2.581e-3 2.36

29 1.226e-4 2.50 5.907e-4 2.51 6.619e-4 2.33 6.620e-4 2.33 6.620e-4 2.33

210 2.818e-5 2.45 1.343e-4 2.82 1.674e-4 2.30 1.674e-4 2.30 1.674e-4 2.30

211 6.478e-6 2.43 2.487e-5 2.92 4.211e-5 2.28 4.211e-5 2.28 4.212e-5 2.28

212 1.484e-6 - 4.233e-6 - 1.055e-5 - 1.055e-5 - 1.055e-5 -

mesh (2.4)

24 3.038e-2 1.97 5.847e-2 1.89 6.790e-2 1.87 6.822e-2 1.86 6.823e-2 1.86

25 7.750e-3 1.94 1.577e-2 1.98 1.857e-2 1.97 1.867e-2 1.97 1.867e-2 1.96

26 2.017e-3 1.96 4.009e-3 1.89 4.754e-3 1.99 4.779e-3 1.99 4.780e-3 1.99

27 5.163e-4 1.99 1.076e-3 1.68 1.195e-3 2.00 1.202e-3 2.00 1.202e-3 2.00

28 1.295e-4 2.00 3.355e-4 2.08 2.993e-4 2.00 3.009e-4 2.00 3.010e-4 2.00

29 3.246e-5 2.00 7.912e-5 2.54 7.487e-5 2.00 7.527e-5 2.00 7.528e-5 2.00

210 8.117e-6 2.00 1.357e-5 2.00 1.872e-5 1.99 1.882e-5 2.00 1.882e-5 2.00

211 2.029e-6 2.00 3.397e-6 2.00 4.704e-6 1.85 4.705e-6 2.00 4.706e-6 2.00

212 5.073e-7 - 8.494e-7 - 1.300e-6 - 1.176e-6 - 1.176e-6 -

mesh (2.8)

24 1.209e-2 2.43 3.055e-2 1.96 3.593e-2 1.95 3.654e-2 1.94 3.660e-2 1.94

25 2.234e-3 2.18 7.873e-3 1.69 9.332e-3 1.97 9.496e-3 1.85 9.513e-3 1.97

26 4.897e-4 2.05 2.444e-3 1.78 2.355e-3 2.00 2.397e-2 2.00 2.401e-3 2.00

27 1.177e-4 2.01 7.102e-4 1.96 5.902e-4 2.00 6.000e-4 2.00 6.017e-4 2.00

28 2.913e-5 2.00 1.819e-4 2.48 1.476e-4 2.00 1.502e-4 2.00 1.505e-4 2.00

29 7.264e-6 2.00 3.255e-5 3.27 4.469e-5 2.00 3.757e-5 2.00 3.764e-5 2.00

210 1.814e-6 2.00 3.355e-6 1.99 1.354e-5 2.00 9.393e-6 2.00 9.410e-6 2.00

211 4.536e-7 2.00 8.462e-7 1.54 3.867e-6 2.00 2.348e-6 2.00 2.352e-6 2.00

212 1.134e-7 - 2.905e-7 - 1.196e-6 - 6.604e-7 - 5.881e-7 -

mesh (2.9)

Table 1. Values of EN and Ord
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Figure 3. Exact, discrete and global numerical solutions (left
up), error (right up�N = 16, left down�N = 32, right down�
N = 64)

8. Conclusion

In the present paper we constructed a numerical solution for the one�dimensional
singularly�perturbed reaction�di�usion boundary�value problem. The class of dif-
ferent schemes was constructed, and we proved the existence and uniqueness of the
discrete numerical solution. After that, we proved ε�uniformly convergence of the
constructed class of di�erent schemes on the modi�ed Shishkin mesh of order 2.
A global numerical solution was constructed based on a linear spline and proved
that the order of the error value is O

(
ln2N/N2

)
. The numerical experiments at

the end of the paper con�rm the theoretical results. The results obtained by using
a global numerical solution based on a natural cubic spline and the Shishkin, the
modi�ed Bakhvalov and last but not least the Liseikin mesh are included in the
numerical experiments. Although, the theoretical analysis for these meshes wasn't
done, the results suggest that the order of convergence is 2 for all of them. Espe-
cially, good results have been achieved by using the Liseikin mesh.
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