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NEW HERMITE-HADAMARD TYPE INEQUALITIES VIA
CONFORMABLE FRACTIONAL INTEGRALS CONCERNING
DIFFERENTIABLE RELATIVE SEMI—(r;m,h;, hy)-CONVEX
MAPPINGS AND THEIR APPLICATIONS

ARTION KASHURI ! AND SAJID IQBAL 2

Abstract. In this article, we first presented a new identity via conformable
fractional integrals. By applied the concept of relative semi—(r;m,h1, ha)-
convexity and the obtained identity as an auxiliary result, some new estimates
with respect to the left hand side of the Hermite-Hadamard type inequalities
via conformable fractional integrals are given. Also, some applications to
special means and error estimates for the midpoint formula are provided as
well.

1. INTRODUCTION AND PRELIMINARIES

The fractional calculus attracted many researches in the last and present cen-
turies. The impact of this fractional calculus in both pure and applied branches
of science and engineering started to increase substantially during the last two
decades apparently. Many researches started to deal with the discrete versions of
this fractional calculus benefitting from the theory of time scales and the refer-
ences therein. The main idea behind setting this fractional calculus is summarized
into two approaches. The first approach is Riemann—Liouville which based on
iterating the integral operator n times and then replaced it by one integral via
the famous cauchy formula where then n! is changed to the Gamma function and
hence the fractional integral of non integer is defined. Then integrals were used
to define Riemann and Caputo fractional derivatives. The second approach is the
Griinwald-letnikov approach which based on iterating the derivative n times and
then fractionalizing by using the Gamma function in the binomial coefficients. The
obtained fractional derivatives in this calculus seemed complicated and lost some
of the basic properties that usual derivatives have such as the product rule and
the chain rule. However, the semigroup properties of these fractional operators be-
have well in some cases. Recently the author in define a new well-behaved simple
fractional derivative called the conformable fractional derivative depending just
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on the basic limit definition of the derivative. For other recent results interested
readers are referred to [I]-[6],[15]-[17] and references therein.

Definition 1.1. [I8] Given a function ¢ : [0,4+00) — R. Then the conformable
fractional derivative of ¢ of order « is defined by
Pyt et ™) — dly
Da(@)(7) = tim & )=00) (1)

e—0t €

for all v > 0, @ € (0,1). If the conformable fractional derivative of ¢ of order «
exists, then we say that ¢ is a-differentiable. We will, sometimes, write ¢®(y) and

dd 5 (¢) for Do (¢)(7y), to denote the conformable fractional derivatives of ¢ of order

a. Let ¢ be a-differentiable in (0, a), and lim.,_,o+ ¢*(7) exists, then define
§(0) = T 6%(). (12)
y—0+
Theorem 1. [18] Let o € (0,1] and ¢,¢ be a—differentiable at a point v > 0.
Then
75 () =ny"T, foralln € R

jT"(ag) 0, for all constant functions (v ) as.

i, o (a16(7) + ax()) = a1 4o (6()) + a2 e (9()), for all ay,az € R

iv. o (9(NY()) :‘15(7)517@( ))+¢( ) a2 (6(7))-
)

dy (o0 _ Y35 (6() =) dm(w('y))
U day ( (v)) - Wm)?
vi. o (9o )(7)) = ¢ (¥(7)) 425 (L (7)), for ¢ differentiable at (7).
If, in addition, the function ¢ is differentiable, then
dg, 1. d
@(aﬁ(v)) = @(qﬁ(v)) (1.3)

Also, it is important to note the following:
1) (1) = 0.

(

(2) i—“ﬂ/(em) =nyl=%" neR

(3) %(sin(nv)) = ny'=%cos(ny),n € R.
(4) %(COS ny)) = —nyl~*sin(ny),n € R.
6) g (2am =1

(6) d%f (Sin (L{X)) = cos ("’a )a

(7) d%w (cos (%)) = —asin (%) .

Definition 1.2. [4] (Conformable fractional integral). Let a € (0,1) and
0 < a; < ag. A function ¢ : [a1,as] — R is a—fractional integrable on [a1, as], if

the integral
as az
/ ¢(v)dw::/ () Hdy (1.4)
ai al
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exists and is finite. All a—fractional integrable functions on [a1, as] is indicated by
Li([ah CLQD'

Definition 1.3. A function ¢ : T — R, I C R, is said to be convez on I, if the
inequality

P(var + (1 = v)az) < yolar) + (1 —v)o(az) (1.5)

holds for all aj,as € I and v € [0,1]. Also, we say that ¢ is concave, if the
inequality (1.5) is reversed. It is well-known that one of the most fundamental

and interesting inequalities for classical convex functions is that associated with
the name of Hermite-Hadamard inequality: If ¢ : I — R is a convex function on

the interval I, then for any aj,as € I with a; # ag, we have the following double

inequality:
ai + as ¢(a1) + P(az) 45(@2)
¢( 2 ) 2—a1/ o0 2 (16)

The above inequality (T.6) was firstly discovered by Hermite in 1881, (see Mitri-
novi¢ and Lackovié [25]) But, this beautiful results (see Pecari¢ et al. [31]). For
more recent results which generalize, improve, and extend this classical Hermite—
Hadamard inequality, one can see [3 @, [30, 29] and references therein. Mean-
while, fractional integrals and derivatives provide an excellent tool for the descrip-
tion of memory and hereditary properties of various materials and processes. It
draws a great application in nonlinear oscillation of earth quakes, many physi-
cal phenomena such as seepage flow in porous media and in fluid dynamic traffic
model, for more recent development on fractional calculus one can see monographs
[, 10, [M9L 2T]. The convexity of function and its generalized form play an impor-
tant role in many fields such as Economic science, Biology, optimization. In recent
years, several extensions, refinements, and generalizations have been considered
for classical convexity [8, 111 [12] 22] [24].

In [13] Dragomir et al. proved the following results connected with the right hand
part of Hermite-Hadamard inequality.

Lemma 1. [I3] Let ¢ : I° C R — R be a differentiable mapping on I° (the interior
of I) and ay,as € I° with a1 < as. If ¢’ € L([a1,az]), then the following identity
holds:

#(a1) + ¢(a2) 1 a2 _ a2
5 T —ar /a1 P(s)ds =

Theorem 2. [I3] Let ¢ : I° C R — R be a differentiable mapping on I° and
ay,as € I° with a1 < ag. If ¢' € L([a1, az2]) and |¢'| is convex on [a1, az], then we
have the following inequality:

olon) toln) L [" 0

2 s — a1

— a1

1
| a=2d0m +a=paar. @)

(ag —a1)(|¢'(a1)|+]¢ (a2)])
< .

s <

(1.8)

In [20], Kirmaci proved the following results:
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Lemma 2. [20] Let ¢ : I° C R — R be a differentiable mapping on I°, a1,as € I°
with ay; < ag. If ¢’ € L([a1,az]), then the following equality holds:

— (s)ds — o (2222) (1.9)

1

= (a2 —a1) VOQ 79 (var + (1 = y)az)dy +/1 (v = D¢ (var + (1 — y)az)dv | .

2

Theorem 3. [20] Let ¢ : I° C R — R be a differentiable mapping on I° and
ai,az € I° with ay < ag. If ¢’ € L([a1,a2]) and |¢'| is convezx on a1, aq], then we
have the following inequality:

/ 6(3)ds _¢(a1 +a2>’ < (az—al)(|¢'(a1)|+\¢/(@2)|)_ (1.10)

- 8

az — a1

Very recently, Anderson [4] investigated the following conformable integral version
of Hermite-Hadamard inequality:

Theorem 4. [4] Let o € (0,1] and ¢ : [a1, az] — R be an a—differentiable function
with 0 < a1 < ag, such that D,(¢) is increasing, then we have the following

inequality
/ C (s)dus < w (1.11)

Moreover, if the function ¢ is decreasing on [a1,as], then we have

¢<a1;a2> —al/ o(s (1.12)

Remark 1.1: It is obvious that, if we choose o = 1, then the inequalities (1.11])
and (1.12) reduce to the inequality (1.6).

Let us recall some special functions and evoke some basic definitions as follows:

a _ L
ay; —ap

Definition 1.4. [36] Let S C R™ be an open set. A function ¢ : S — [0, 4+00)
is said to be s—convex (or s—Breckner convex) with s € (0, 1], if for every z,y € S
and t € [0, 1],

(1 =tz +ty) < (1 —-1)°¢(x) +°6(y). (1.13)

Definition 1.5. [27] A function ¢ : K — R is said to be s—Godunova—Levin—
Dragomir convex of second kind, if

(1 =tz +ty) < (1 —1)""¢(x) +t°o(y), (1.14)
for each z,y € K,t € (0,1) and s € (0, 1].

Definition 1.6. [35] A non-negative function ¢ : K C R — R is said to be a
tgs—convexr on K, if

P((1 =)o +ty) < (1 —1)[p(x) + o (y)] (1.15)
holds for all z,y € K and ¢ € (0,1).
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Definition 1.7. [23] A function ¢ : I C R — R is said to MT-convez, if it is
non-negative and Vz,y € I and ¢ € (0, 1) satisfies the following inequality

Py + Y
Vi—t 2Vt
Definition 1.8. [28] A function: ¢ : I C R — R is said to be m—MT—convex,

if ¢ is positive and for Vz,y € I, and ¢t € (0,1), among m € [0, 1], satisfies the
following inequality

¢t + (1 —t)y) <

o(y). (1.16)

[\

Vit my1—t
ot +m(1 =) < o o(e) +
Motivated by above results an literatures, the main purpose of the paper is to
present an identity for conformable fractional integrals and by applying the concept
of relative semi—(r; m, hy, ho)—convexity and the obtained identity as an auxiliary
result, some new estimates with respect to the left hand side of the Hermite—
Hadamard type inequalities via conformable fractional integrals will given. Also,
some inequalities for certain special means of two positive real numbers are deduced
and at the end of the paper we give the error estimations for the midpoint formula.

o) (1.17)

2. MAIN RESULTS

Firstly, we introduce a new class called relative semi—(r;m, hy, ho)—convex map-
pings as follows:

Definition 2.1. Let I C R and hy,hs : [0,1] — [0,400) are continuous func-
tions. A mapping ¢ : I — (0,+00) is said to be relative semi—(r;m,hy, ho)—
convez, if

p(var + (1 = y)az) < My(hi(7), h2(7); mé(a1), d(az)) (2.1)

holds for all ai,as € I and v € [0,1] and for some fized m € (0,1], where

(mha(1)6" (a1) + ha(7)¢" (a2)] ", if 7 # 0;
M, (h1(7), ha(7);me(ar), p(az)) :=

(me(ar)]™ P (az)]", ifr =0,

is the weighted power mean of order r for positive numbers ¢(a1) and ¢(az).

Remark 2.1: In Definition if we choose m = r = 1, this definition reduces
to the definition considered by Noor in [26] and Fulga et. al. in [14].

Remark 2.2: For r = 1, let us discuss some special cases in Definition [2.1

(I) Taking hi(t) = (1 —t)%, ha(t) = t* for s € (0,1], then we have relative semi—
(m, s)-Breckner convex mappings.

(IT) Choosing h1(t) = (1 —t)7%, ha(t) = ¢t7*° for s € (0,1], then we get relative
semi—(m, s)-Godunova—Levin—Dragomir convex mappings.

(ITT) Taking hi(t) = h(1 —t), ha(t) = h(t), then we obtain relative semi—(m, h)—
convex mappings.

IV) Choosing hq (t) = ha(t) = t(1—1t), then we have relative semi—(m, tgs)—convex
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mappings.

V31—t t
(V) Taking hi(t) = Y———, ho(t) = Vb

2/t 2v1—1
convex mappings. It is worth to mention here that to the best of our knowledge
all the special cases discussed above are new in the literature.

, then we get relative semi—-m—-MT—-

In order to prove our main results we need the following Lemma.

Lemma 3. Let 0 < ay < ag, and let ¢ : [a1,a2] — R be a differentiable function
on (a1,az) for a € (0,1]. If Do(9) € LL([a1,az]), then the following identity holds:

é (a1 J2ra2) -~ = fa? /(:2 P(s)das
- 2((22%—_11(11;) [/01 <((1 —2’7)a2 L +2“/)a1>2a_1 ~ g ((1 —27)[12 L +2v)a1)a_1>

Due (e ) ey,

X

2 2

X /Ol <<(1 —27)111 . (1 +27)a2)2a71 g ((1 —27)a1 n (1 +27)a2)a1>

Do () ((l _27)(11 + 4 +27)a2) vlfadav].

X

Proof. Integrating by parts, we have

h= /01 (((1 _2’7)a2 + < +2’y)a1)2a1 — a8 ((1 —;)az n (1 +2’7)a1)°‘1>

> Da(d)) <(1 — 7)0/2 + (1 +27)a1) ,yl—ada,y

2

<((1 —vaz (14 7)a1>a a) ¢ ((1‘;)“2 + <1+2v>a1> 1
- a?

al—as ‘
2 2 aoe 0

_ /1(1 ((1 —7az (1 +7)a1>“1 (a1 _a2> ¢ ((1—27>a2 n (1+;>a1)
0

d
2 2 2 e 7
ajtag

agzal[((%;%)a—a@oﬁ(“l;%)_a/al oo
ne [ ((“ L I +27>a2)a1>

X Da(0) <(1 _27)6” + a +27)a2) Y%y

_ /01 (((1 —;)al L a +27)a2>0‘ _a%> o ((1 —27)a1 L a +27)a2) i
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(1=7)a1 | (1+7)a
0o | e\ )@ (5e o),
2 2 -0 sz=a1 ‘0
_ (I—y)as (I1+v)a2
- 1 7 lay—ap\ ? +
/a(( 27)a1+( +7)a2> (ag a1> ( 2 2 )dfy
0

2 2 G2-ay

2 « ai + as @ ay + as a2
- a2_a1[(a2—(2 ))¢(2 )—a/ﬂgasz(s)das},

where we have used the change of variable s = (1_7)“2 + (H’Y)“l in I, and s =
(I=va | (+v)a
2 2

a2 ay

in I5. Then multiplying both 51des by ag—ag)’ we get the
ay

desired result. O

Theorem 5. Let 0 < a1 < a2,0 < r < 1 and ¢ : [a1,a2] — (0,+00) be
a differentiable mapping on (a1,a2) for a € (0, 1]. Suppose hi,hy : [0,1] —
[0, +00) are continuous functions If Do () € LL(a1,az]) and ¢ is relative semi—
(r;m, hy, ha)—convez on [a1,as], then we have the following inequality:

CL1—|—CL2
o - e [t

2 L6 (00)) T (7); 0, 7) + (6(02)) T (ha(); @, 7)]

< 7
~ 2(ag —ay)

(@ (@) T ()30, 7) + (8 (@) T (ha();a0)F

3=

(2.2)

where o ((1 g G +72)a§‘1> ((1 —27)a2 L a +2'y)a1) —af,

1
I(hi(v);a,r) 2= /A ;< +7>d7, Vi=1,2,

1—
( 5 )d'y, Vi=1,2.

Proof. First of all, we consider Lemma, [3| and then using the convexity of y®—!
and —y® (y > 0) for a € (0,1]. Also, by Minkowski inequality, properties of the
modulus and since the mapping ¢’ is relative semi—(r; m, hq, ho)—convex, we have

‘qﬁ (a1 +a2> _ = i n /:2 d(s)das
a2 —a 1 — a a « — a a
2(;2 _all)[/ (((1 27) 2 (1+27) 1) —a‘f) ¢,((1 27) 2 (1+27) 1)‘Ch

n / ( ((1—7)% n a +27)a2)°“) /((1 —27)111 L a +27)a2>‘d7]

Tyl

T(hi(y);anr) = / Ba(1)h
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ﬁ[/ol <((1 —27)112 n (1 +2’Y)al)a71 ((1 —27)‘12 + (1 +2'V)‘“) —(ﬁ‘)

< o ((1 —27)112 N (1 +27)a1> iy

. /01 (a% B ((1 —7)ag N (1 +2'y)a§>> & ((1 —27)a1 n (1 +2’y)a2) d’y]

- 2((12 —ay {/ <((1 — y)ag! . (1+~y2)a;f1> ((1 727)@ La +2’y)a1) a%)
o5 —a%)

[ (B52) @y e (F5) @] o

N /01 <a§ B ((1 —;)a? L a +;)a%>>

x [mh (I‘T'Y) (¢ (a1))" + ho ( ) (@(@2)] " ar}

< gogap ([ miotevaont (F57) o)’

+ (/ ¢ (@2)Aa(1)h5 (1;0@)*}%

+ (/ mb o (anBa(w)hf (1_—”) dv)r + (/1 &' (02)Ba (1)1} (1 ) dv)r]%}

as — ay

IN

= 2(as _al) ¢ (a0)"I"(h1(7); 0 ) + (@' (a2))" I (ha(7); 7))
+ @ @) T (i) + (@ (@) T (ha()s )] 7 }.
Hence, we have the result in . O

Remark 2.3: By putting a =m =r =1, hy(y) = and ha(y) =1 — v, in (2.2),
we get inequality (1.10).

Theorem 6. Let 0 < a1 < a2,0 < r < 1 and ¢ : [a1,a2] — (0,400) be
a differentiable mapping on (ay,as) for a € (0,1]. Suppose hi,hy : [0,1] —
[0, 4+00) are continuous functions. If Do (¢) € LY ([a1,as]) and ¢'? is relative semi—
(r;m, ha, ha)—convex on [ai,as) for ¢ > 1, p~t + ¢t = 1, then the following
inequality holds:

a1+a2
o _al/ o(s

< %{ (41(0,p) P (9! (1)) T (ha ()5 7) + (6 (a2)) T (o (3); )]
2(ag — af)

(20, p) (6 ()T (a(=7); )+ (& (02)) 9T (ha(—7)s )] 7 ], (2.3)

where
! 1— 1+ « P
h(a,p) = /(<( 27)a2+( 27)6”) —a‘f‘) dy
0
aytaz

2 2 (0 «
- —/ (7 — af)? dv,
ai

(a2 —a1)
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! 1— 1+ “\*
dy(a,p) = /0 (ag - (( 27)(“ i 27)@) ) dy
_ 2 *@ a . a\pP
- (a2 _ al) ‘/nyl_;_{12 (a2 v ) d77

e
I(hi(y);r) = /Ohl (J;y)dy, Vi=1,2.

69

Proof. Using Lemma [3| relative semi—(r;m, hy, hy)—convexity of ¢’¢ on [a1,as],
Holder’s inequality, Minkowski inequality and property of the modulus, it follows

that

‘¢ (al-‘raz) _ aoa _ /az o()das
ay —ay Jay

< wpomlf (52 052) -a)

i /( ((1 7)@1 (1+27)a2)“) /((1—27)a1+(1+:7)a2> dv] 2

IN

2(225_—?%{ (/0 (((1 _27)@ +0 +2% ) - “?)pd”)é
y (/1 <¢,<(1—7)a2+(1+”/)a1))qd7)é
2 2
N (/01<ag ((1 Nar 1+7a2) ) iy
2
(e )
o 2
< ainl (L ( ) ) o)
x (/Ol[mhl( (1;7)<¢<a2>) )7
e ([ (o (B 0y Y )
( _
o

)(¢ (a1))™ + hy

< ([ [ (55 )(¢<a1>) o (2 )((b(az)) )é}
< 2(‘;22:‘;1?){@1(”)) ([ m*@@nmi (H2)a)
; (/ (¢ (a2)ng (* ;V)dv)y]“’

& ((1 — 7)az n (1+7)a1

)

dy

£ (A2(a,p))® (/ mr (¢ (a1))?hy (—) dv)r + (/Ol(d(az))qhz% (FTV) d'V)T]qu}

az — ay

= — {(Al(a P)) [m(¢'(a1))™ (hl(’v);T)+(¢>'(a2))”’f'“(h2('7);7")]71‘1
2 (ag —af)

+ (ha(ey )P [m(¢/ (@)™ " (ha (—)im) + (¢'(a2))rqfr(h2(*v);7“)}%q}'
Hence, we have the result in (2.3).
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Corollary 6.1. By setting p = q = 2 in Theorem (@, we obtain the following
inequality

a1+a2
oG e [ ot

< ﬁ{ L@ p)m(¢' (@)™ I ( (1)) + (¢ (02))*" I (ha () )] (2.4)

VA0, Dm0 (@) T (i (=9); ) + (6 (a2) " I (ha(—); )] }.

Remark 2.4: By setting a = m =7 =1, hi(y) = v and ha(y) =1 -, in (2.3),
we get the following inequality

’¢<al+a2) 1 a2¢(s)ds

a2 — ay

= % ((a2 —a12)(p+1)>; (a2 ;m)p:l {cl +c§} ;
where €y = SO+ G lan))” o (o))" + e et

Theorem 7. Let 0 < a1 < a2,0 < r < 1 and ¢ : [a1,a2] — (0,+00) be
a differentiable mapping on (a1,a2) for a € (0,1]. Suppose hi,he : [0,1] —
[0, +00) are continuous functions. If Do (¢) € L. ([a1, a2]) and ¢'? is relative semi—
(r;m, hy, ha)—convez on [a1,as] for ¢ > 1, then the following inequality holds:

aj +a2
¢( a _al/ ¢ das

{ (41(0))' 77 (¢! (an))" I (1 (7); @,7) + (& (a2)) 1] (ha(7): o, 7)] 77 (2.5)

- 2 a2 —
+ (B <a>> T (¢! (@) 0T} (i (1) 0, 7) + (8 (a2))7 T (ha(); 0,7)] 7 },

where

Caly) i= (Ui 4 P )" g,

Dy () :=a§ — ((1_;)(“ + (1+;)a2) )

« a1+as @+l
= [1 Cu(v)dy = 2 {alﬂ_( ) N 0 Sl }
0 Jy = (a1 — ag) a+1 ! 2 ’
a+1 ai1+as\otl
1 2 as — ay (£2) - ( B) )
Bi(a) = [ Da(y)dy = [ o _ ’
1(&) fO (’y) Y (a2 o al) a2 ( 2 ) o+ 1

Lihi(y)sar) == [y Ca(mh] (52 dy, Vi=1,2,

Ti(hi(y)ia,r) o= [y Da()hi (552)dy, Vi=1.2.
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Proof. Using Lemma (3| relative semi—(r;m, hy, ho)—convexity of ¢’'¢ on [a1,az],
Holder’s inequality, Minkowski inequality and property of the modulus, it follows
that

‘¢ (al -‘raz) _— @ _ az o(5)das
ag —

2(225 _aal?) [/01 (((1 _127)(:112 n (1 +27)a1)°‘ B a?> & ((1 —27)(12 N (a +27)a1)
L (g gy o (5
() )

ag —af 0

: (/o (((1 e 1+7a1) >(¢ (j Naz (1+7a1)) dw)}l
n ( ( (1 Nar 1+7a2) )dvla
)

([ (0 ) (S ) )

az — a1
2(ag —af)

) (/ Ca(y)[mhs (1 ;7) (¢/(a1))"® + ha (HT”) (¢/(a2))7q]%d7)
+  (Bi(a)! (/ Da('}’ ( ) (¢'(a1))" + ha (“TV) (¢’(a2))7‘q:|%d’y)

IN

dy

IN

Q=

J

1—1

(Ar(e)) 9

Q-

Q=

J

= Sl a0 (e () I () ) (6 (02) 8 (hal);0,7)]

+ (Bu(@) T [m(@ () T (ha (7); 0, 7) + (¢/(a2))Tq71(h2(7);0!77“)]%7}'
Hence, we have the result in (2.5)). O

Corollary 7.1. By setting g = 1 in Theorem (@, we get the following inequality

HOF) - [T
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= %{[m(qﬁ’(al))w(m(v); a, 1) + (¢ (a2))" I} (ha(7); @, )]

Hm(@! (@) Ty (7); 07) + (9 (@2)) Ty (Ra(7); )] |-

Remark 2.5: By setting « =m =1 =1, hi(vy) =7 and ha(y) =1 — 1+, in (2.5),
we get the following inequality

a1 + as 1 a2
() o [ o

—a\'"F 1 1
(az 1) {[A2(1)(¢’(a1))q + 43(1)(¢"(a2))?] 7 + [B2(1)(¢'(a1))? + B3(1)(¢'(a2))]® },

1 4 3 _ (aitaz\3 2 (a14az)? 3
where As(1) := 3 <(a2 .z [al (3 2 ) —ay <a1(22) ] _ % 7

) - <m;@>3]>
3 )
(a? - (‘“3“2)2> _ai- (‘“‘5“2)3} _ al)
2 3 9 |
=1 (3 4 qed— (=4=)° a3 — (“5)”
BS(]-) = 5 <2 — (a2 — a1)2 |: 3 — a <2 :| .

Remark 2.6: Several important variants of Hermite-Hadamard inequality have
been provided in the literature, such as the versions established by Anderson [4],
Sarikaya et al. [32] and Set et al. [33] etc. Recently, Set et al. [34] presented some
Hermite-Hadamard type inequalities for conformable fractional integrals. They
have obtained results for the version of Hermite-Hadamard type inequalities given
in [33], while our results are devoted to the version obtained by Anderson [4].
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3. APPLICATIONS

Several special cases of Hermite-Hadamard inequality for conformable fractional
integrals can be deduced from our Theorems [5] [6] and [7], if we choose appropriate
h1, ho continuous functions such that ¢'? should be relative semi—(r;m, hy, ha)—
convex for ¢ > 1.

We begin, this section by considering some particular means for arbitrary positive
real numbers aq, as such that a; # as. So, for this purpose we recall the following
well-known definitions in the literature:

(1) The arithmetic mean:

A= A(al,ag) = il ;—GQ.
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(2) The generalized logarithmic («,r)-th mean:

1
a(ay™ —ai™) 1"
(a5 —af)(r + a)
Now, by making use of the results obtained in Section [2] we give some applications
to special means as follows:

L(a,r) = L(a,m(a1,a2) = , 1#0,—a; a€(0,1], r eR.

Proposition 3.1. Let 0 < a1 < ag and o € (0,1]. Then for r1 > 1, the following
inequality holds:

, ri(az —a o o
4 (an,a2) — £, (a1, 0)] < 22O g an=t 4 pajag ),

~ 2(a§ —af)

where

Alo) = 13ag — 35a¢ + 11 (a1a8 ™" + azaf ™) ’

96
Bla) — 19a§ —29a§ + 5 (a1a5 ™" + agaf ") .
96

Proof. The result follows from Theorem ifwetakem=r=1,r>1,h(y) =7~
and hy(y) =1 —~ for ¢(z) = 2™, z > 0. O

Proposition 3.2. Let 0 < a1 < ay and « € (0,1]. Then for r1 > 1,q¢ > 1 and
p~t 4+ g~ =1, the following inequality holds:
‘Ah (a,l7 (12) — LZ;,Tl)(al’ 112)|

1
< e[ (g (a, )7 (3774 T)" 4

2T(ag—a‘l">
1
+ (42(0,p))7 (7707 4 30§ D)7
where 41(c,p) and 42(a, p) are defined as in Theorem@.

Proof. One can obtain the result from Theorem [0} if we choose m =r =1, r; >
1,hi(y) = and ho(y) =1 — 5 for ¢(z) = 2™,z > 0. O

Proposition 3.3. Let 0 < a; < ag and a € (0,1]. Then forry > 1 and g > 1, the
following inequality holds:

|47 (a1, a2) — L, (a1, a2)]|
8 (a2 - al) 1-1 (ri—1)q (ri—1)g1%
— 4 A4 A q
S Sias —a 1 A (@)l T () ]
1 _ ry— 1
£ (Bu(0) 7 [Ba(@)al” TV 4 By(a)ag I

where
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a+l (a1+a2 )O‘+1
2

Bi(a) = (agim)[a% (QQ;(H)— 2 a1 ]7

+2 +1
1a(e) 1 4 [a‘f‘+2 _ (hgaz)a af ! — (m;w)a ] 300
a) = = —a - =1
2 2 | (a2 —a1)? a+2 2 a+1 2
a+1 a+2
B2(a) 1 a$ 4 [ ag ™ — (alJQrGQ) a5™? — <a1;a2) ]
a) = - | =- a - ,
2 2| 2 7 (a2 — a2 l®? a1 a+2

2 | (a2 —a1)? a+1 a+2 2

a+2 a+1
1 ( 3ag 4 agt? — (wfez) agt! — (mge2)
B3(a) = = | —= — [ — a1 ] .

a+1 a+2
(e ()T e ()
I3() = = [al — :| - — 1,

2 2 (a2 —a1)? a+2 a+1

Proof. One can obtain the result from Theorem [7] if we take m = r = 1,7 >
1,hi(y) = and ha(y) =1 — 5 for ¢(x) = 2™, > 0. O

Proposition 3.4. Let 0 < a; < ag and « € (0,1). Then for ¢ > 1, the following
inequality holds:

R N e (G b Azé?ﬁ
o e [P D))

where 41(), By (), A2(c), Bo(cv), 43(x), Bs(v) are defined as in Proposition[3.3

Proof. The statement of results follows from Theorem [7] if we choose m = r
1

1, h1(y) = v and ha(y) =1 — v for ¢(x)z;,x>0. O

Proposition 3.5. Let 0 < a; < az anda € (0,1). Then forq> 1 andp t+q ' =
1, the following inequality holds:

|A_1(a1, ag) — L(7a1,—1) (0,1, @2)|

1

1 1
as — aq 1 [ 3 1\° 1 (1 3\
M—[(Al(a,p))p <2q + 2q> + (42(,p))” <2q + 2q> ],
27 (a$g —af) a;’ Gy ap”  ay

where 41(c,p) and 42(«, p) are defined as in Theorem@

Proof. We can get the inequality from Theorem@, ifwetakem=r=1, hi(y) =~
1

and ha(y) =1 —~ for ¢(z) = =, z > 0. O
x

Let P be the partition of the points a1 =z < 21 < ... < Z,,_1 < T, = as of the
interval [a1,as] and consider the quadrature formula:
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/“2 ¢(2)dat = Ta($,P) + Ea(9,P), (3.1)

where

n—1 a g
Ta($,P) =Y ¢ (xi +;”1> (8, = a7) (3.2)

) (0%
=0

is the midpoint version and E,(¢,P) denotes the associated approximation error.
Here, we are going to derive some new error estimates for the midpoint formula.

Proposition 3.6. Let 0 < a1 < az and ¢ : [a1,az] — (0,400) be a differentiable
mapping on (ay,az) for a € (0,1]. If Do(¢) € Ll ([a1,a2]) and ¢’ is relative semi—
(1;1,7,1 — v)—convex on [a1, az], then we have the following inequality:

Ealo PI< S P 4 (0) (6 (0)) + B0) (0 (21)))

=0
where
Ala) == 132, — 360 + 1 (wiafy +@ipaaf ")
. 96 )
B(a) = 192, — 2928 +5 (ziafy)| + wipaal )
B 96 :

Proof. Applying Theorem [5| on the subintervals [z;,z;41] ( = 0,1,...,n — 1) of
the partition P, for m =r =1, hi(y) = v and ha(y) = 1 — 7, we have

‘¢ <:177 +2Ii+1) (24, — ) - /Ii+1 ¢(z)dax

«

7

1220 (4 0) ¢/ (02)) + Bl (@ (s

Hence, from above, we obtain

IN

a

 $(@) i — T (6 P>\

n—1

Z {/j+1 d(z)dox — ¢ (wl +2$i+1> (zgﬂo; ) }‘

=0 i

n—1 Tit1 ) ) o p— L
{/z d(x)dox — @ ("3z +217z+1> (%Ha z7) }‘

7

iNg

IN
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Proposition 3.7. Let 0 < a; < az and ¢ : [a1,az] — (0,400) be a differentiable
mapping on (a1, az) for a € (0,1]. If Do(¢) € L. (Ja1, az]) and ¢'? is relative semi—
(1;1,7,1 — v)—convex on [a1,as] with ¢ > 1, p~1 4+ ¢~ = 1, then the following
inequality holds:

Q=

Eo.p)] < 3 I (0 p) P B @)+ (6 )]

=0 27
 (dalou))? [(¢/ @) + 3¢/ )) ]
where 41 (o, p) and 43(«a, p) are defined as in Theorem@

Proof. The proof is analogous to that of Proposition [3.6 only by using Theorem [§]
and taking a1 = x; and ag = x;41. O

Proposition 3.8. Let 0 < a; < ag and ¢ : [a1,a3] — (0,400) be a differentiable
mapping on (a1, az) for a € (0,1]. If Do () € LY ([a1, a2]) and ¢'? is relative semi—
(1;1,7,1 — v)—convex on [a1,as] for ¢ > 1, then the following inequality holds:

B, P < 3 I (1 0) 1 [ha(a) (6 ()7 + A(0)( (00))"

=0

Q=

1

+ (Bu(@)' T [Ba() (@ ()7 + Bs(a)(¢'(xi+1))q]a}'
where 41(at), By (), 42(r), Bo(av), 43(c), B3(at) are defined as in Proposition[3.3,

Proof. The proof is analogous to that of Proposition only by using Theorem
and setting a1 = x; and as = x;41. O

4. CONCLUSION

In the present study, we obtained an integral identity associated with inequality
(L.12), and by making use of it, we found some Hermite-Hadamard type inequal-
ities for conformable fractional integrals. As a consequence of our main results,
we established some new inequalities for certain bivariate means of positive real
numbers, such as arithmetic mean and generalized logarithmic (o, 7)-th mean and
provided some new error estimations for the midpoint formula. Since the new class
of convex functions have large applications in many mathematical areas, they can
be applied to obtain several results in convex analysis, special functions, quan-
tum mechanics, related optimization theory, mathematical inequalities and may
stimulate further research in different areas of pure and applied sciences.
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