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SOME CLASSIFICATIONS OF SUBRINGS OF THE RING OF

CONTINUOUS FUNCTIONS

SELAHATTIN KILINÇ

Abstract. In this work, for a topological space (X, τ) and the ring of func-
tions C(X, τ) = {f | f : (X, τ) → (R, τst) and f is continuous }, where τst is
the standard topology on the real line, for a closed, sublattice and subring A
of C(X, τ) we investigate su�cient conditions under which is not possible to
�nd a topology τ ′ ⊂ τ on X such that A = C (X, τ ′).

1. Introduction

Let RX is the collection of all real valued functions on a set X. Let f and g
be functions de�ned on a set X, and let (f + g)(x) = f(x) + g(x) and (f.g)(x) =
f(x) · g(x) for all x ∈ X. Then Rx is a ring under these operations of addition and
multiplication. Let X is non empty set and τ be a topology on it. We denote the
ring of real valued continuous functions from X to R by C(X, τ) and the ring of
bounded, real valued, continuous functions from X to R by C∗(X, τ). We simply
write C(X), (resp. C∗(X)) instead of C(X, τ), (resp. C∗(X, τ)) in case there is no
change for confusion. The partial ordering on RX is de�ned by; f ≥ g if and only if
f (x) ≥ g (x) for all x ∈ X. For any f, g in RX , f ∨g and f ∧g exist in RX . In fact
(f ∨ g)(x) = max(f(x), g(x)) for all x ∈ X and (f ∧ g)(x) = min(f(x), g(x))
for all x ∈ X. Thus RX is lattice-ordered ring. For every f ∈ RX , since
|f |(x) = max(f(x),−f(x)) = |f(x)| for all x ∈ X , that |f |= f ∨ (−f) ∈
RX . Since (f ∨ g) (x) = max {f (x) , g (x)} = 1

2 [f (x) + g (x) + |f (x)− g (x)| ],
f, g C(X) that f ∨ g ∈ C(X). Similarly, f ∧ g ∈ C(X) is obtained. Therefore
C(X) is a subalgebra and sublattice of RX . We know from [3] C∗(X) is a sub-
algebra and sublattice of C(X). If (R, d) is a metric space (bounded metric) and

X is a topological space, then
−
d(f, g) = sup {d(f(x), g(x)), x ∈ X} determines a

metric on RX . The topology determined by this metric is the uniform convergence
topology. It is clear that, with this topology, C(X) is closed subring of RX
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LetX be any set andA be a family of functions fromX to R. We will investigate
the necessary and su�cient conditions for a τ ′ ⊂ τ topology to exist such that A =
C (X, τ ′) ⊂ C(X, τ).

In this article for a closed, sublattice and subring A of C(X, τ) we examine the
existence of a topology τ ′ such that A = C(X, τ ′). In the second section, we give
some basic de�nitions and theorems. In the third section, by de�ning a special
subring, we show some basic properties of this subring. In fourth section we found
su�cient conditions under which it is not possible to �nd a topology τ ′ ⊂ τ on X
such that A = C(X, τ ′).

2. Preliminaries

Throughout this paper, we will de�ne φ as follows, let i : X → Y be contin-
uous and the map φ : C(Y ) → C(X) , f ∈ C(Y ) with φ (f) = f ◦ i is a ring
homomorphism.

Theorem 1. If φ : C(Y ) → C(X) is a ring homomorphism, then φ is the lattice
homomorphism.

Proof. The proof is trivial. □

Theorem 2. If f : (X, τ1) → (Y, τ2) is continuous, φ : C(Y ) → C(X) is ring
homomorphism and f(X) is dense subset of Y , then φ is one to one.

Proof. The proof is trivial. □

De�nition 2.1. [4, 5] Let A be a nonempty subset of topological space (X, τ).
The collection τ|A = {A ∩ U : U ∈ τ} of subsets of A is a topology on A called the
subspace topology. The topological space (A, τA) is said to be a subspace of (X, τ).

Let (X, τ) is a topological space and A ⊆ X. Then the closure of A is denoted
by Ā.

Let (X, τ) be a topological space and x ∈ X. Then the open neighborhood
system at x is denoted by V (x) = {V ∈ τ : x ∈ V }.

3. Characteristics of the special subring

In this section, we will investigate and identify the subring of the ring of contin-
uous functions C(X) that possess the properties of being a subalgebra, sublattice,
and closed.

Lemma 1. Let Y is bounded metric space, X ⊂ Y and i : X → Y be continuous.

If i(X) = Y and φ (C(Y )) ⊂ C(X), then φ (C(Y )) is closed in C(X)

Proof. Firstly we show that φ is isometric. We know that
−
dX(foi, goi) = sup{d((foi)(x), (goi)(x)), x ∈ X}

since
{d((foi)(x), (goi)(x)), x ∈ X} ⊆ {d(f(y), g(y)), y ∈ Y }
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then
sup{d((foi)(x), (goi)(x)), x ∈ X} ≤ sup{d(f(y), g(y)), y ∈ Y }

Now let's take h = |f − g| ∧ 1, here
−
dY (f, g) = sup{h(y), y ∈ Y } and so

−
dX((foi)(x), (goi)(x), x ∈ X) = sup{(hoi)(x), x ∈ X}

Suppose that
sup{(hoi)(x), x ∈ X} < sup{(h(y) : y ∈ Y }

Let sup{(hoi)(x), x ∈ X} = a. Then, since
−
dY (f, g) = sup{h(y), y ∈ Y } > a

there must exist at least one element, y0, in the set Y such that h(y0) > a. Since
the function h : Y → R is continuous at the point y0 ∈ Y , then for each open set
V containing h(y0) there exist an open set U containing Y such that h(U) ⊂ V .
Since i : X → Y is continuous and i(X) = Y , then for every open set U ⊂ Y ,
U ∩ i(X) ̸= ∅. Let's take a point y′ ∈ U ∩ i(X) and V = (a,+∞). Since h(U) ⊂ V ,
then h(y′) > a for y′ ∈ U . Since i : X → Y is continuous, then there is a x′ ∈ X
such that i(x′) = y′. Since

sup{(hoi)(x′), x′ ∈ X} = a

then (hoi)(x′) ≤ a. However, this contradicts the fact that h(y′) > a, as (hoi)(x′) =
h(i(x′)) = h(y′). Thus, it is shown that

sup{(h(y) : y ∈ Y } = sup{(hoi)(x), x ∈ X}
In other words,

−
dY (f, g) =

−
dX(foi, goi)

and so φ is an isometry.
Now let's show that φ (C(Y )) is closed. Let's take a sequence (gn) ∈ φ (C (Y )) .

Since gn → g is a convergent sequence, then it is a Cauchy sequence. Then there

exists an n ∈ N such that
−
dX(gm, gn) < ε for every ε > 0 and every m,n > n0.

Also, since (fnoi) = (gn) and (fmoi) = (gm), then
−
dX(fmoi, fnoi) < ε. Due to

the isometry,
−
dY (fm, fn) < ε is provided. Then, (fn) is a Cauchy sequence. Since

C(Y ) is complete, then there is a f ∈ C(Y ) such that fn → f . Because of the
isometry,

fn → f ⇔ dY (fn, f) → 0

and as a result
−
dX (fnoi, foi) → 0. Since fnoi → foi and (fnoi) = (gn), then

gn → foi. Simultaneously, since gn → g, then g = foi. Thus, φ(f) = foi = g,
g ∈ φ (C (Y )) . This show that φ (C (Y )) is closed. □

Theorem 3. Let X and Y be two topological spaces, and let i : X → Y be a contin-
uous function such that i(X) is a dense subset of Y and Y ̸= i(X). Additionally,
let

i : X → i(X)



10 KILINÇ

be a homeomorphism and let

I = {f ◦ i : f(y) = 0,∀y ∈ (Y − i(X))} ⊆ φ(C(Y )) ⊆ C(X)

then,

(1) I ∩ C∗(X) is ideal of C∗(X).
(2) If g ∈ I, h ∈ C∗(X) then g.h ∈ I.

Proof.
(1) Let take f ◦ i ∈ I ∩ C∗(X) and g ∈ C∗(X). Assume that (f ◦ i).g = h. We
de�ned as

h(y) =

{
0, y ∈ Y − i(X)
((f ◦ i).g)(x), i(x) = y, y ∈ i(X)

Let us show the continuity of the h for three di�erent cases.
Case 1 Let y0 ∈ Y − i(X). Then, h(y0) = 0. Let's take (−ε, ε) as a neighborhood
of 0 ∈ R for every ε > 0. Since g ∈ C∗(X), there exists a r ∈ R such that r > 0
and |g(x)| ≤ r for all x ∈ X. Simultaneously, since the function f is continuous,
there exists a neighborhood U of y0 such that f(U) ⊆

(−ε
r , ε

r

)
. For y ∈ U , if

y ∈ i(X), then h(y) = ((f ◦ i).g)(x), where i(x) = y, and thus f(y) ·g(x) ∈ (−ε, ε).
Therefore, h(U) ⊆ (−ε, ε) becomes true. Thus, h is continuous.
Case 2 Let y0 ∈ i(X)) and f(y0) = 0. Since g ∈ C∗(X), there exists a r ∈ R such
that r > 0 and |g(x)| ≤ r for all x ∈ X. Now let's show that h(U) ⊆ (−ε, ε). For
y0 ∈ U , if y0 ∈ Y − i(X), then h(y0) = 0 ∈ (−ε, ε). For y0 ∈ U , if y0 ∈ i(X), then
h(y0) = ((f ◦ i).g)(x) and i(x) = y0, and thus f(y0) · g(x) ∈ (−ε, ε). Therefore,
h(U) ⊆ (−ε, ε) holds true. Thus, the function h is continuous at the point y0.
Case 3 Let f(y0) ̸= 0. Assume that f(y0) = m. If i : X → i(X) is a bijective
homeomorphism and i(x0) = y0, and g(x0) = n, then h(y0) = ((f ◦ i)g) (x) =
f(y).g(x) = m.n holds true. Now we can show that function h is continuous at
point y0. Since g ∈ C∗(X), there exists a r ∈ R such that r > 0 and |g(x)| ≤ r
for all x ∈ X. Additionally, since the function g is continuous at point x0, there

exists a neighborhood of x0 called V such that g(V ) ⊆
(
n− ε

2(|m|+1) , n+ ε
2(|m|+1)

)
for each ε > 0. Simultaneously, since the function f is also continuous at the
point y0, then y0 ∈ i(X) and there is an open set U ⊆ Y such that |m| < ε

r ,
f(U) ⊆

(
m− ε

r ,m+ ε
r

)
and 0 /∈

(
m− ε

r ,m+ ε
r

)
. Therefore, y0 ∈ U . Now we

show that for any ε > 0, h(U) ⊆ (m.n − ε,m.n + ε). Since i is continuous,
then for x0 ∈ X there is a open set U ⊆ i(X) such that i(x0) = yo ∈ U . We
know that the function i−1 : i(X) → X is also continuous. Let's take a W
neighborhood of the point y0 such that i−1(W ) = M . If W = U is chosen, then
i(M∩V ) = i(M)∩i(V ) = U∩i(V ) = N and N ⊆ U is an open neighborhood of the
point y0. Let's take a y ∈ N . Since N ⊆ i(M ∩V ), there is a x ∈ M ∩V such that
i(x) = y. Then, since f(U) ⊆

(
m− ε

2r ,m+ ε
2r

)
, then f(y) ∈

(
m− ε

2r ,m+ ε
2r

)
.

Since g(x) ∈
(
n− ε

2(|m|+1) , n+ ε
2(|m|+1)

)
then,

|g(x).f(y)−m.n| = |g(x).(f(x)−m) + (g(x)− n).m|
≤ |g(x)| . |f(y)−m|+ |g(x)− n| |m|
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< r. |f(y)−m|+ |g(x)− n| .(|m|+ 1)

≤ r.
ε

2r
+

ε

2. (|m|+ 1)
. (|m|+ 1)

= ε

Thus, h(N) ⊆ (m.n− ε,m.n+ ε) and so h is continuous.
Now we show that N is a open subset of Y . We know N = U ∩ i(V ) and i is a

homomorphism. If |m|< ε
r , then there exists an open set U ⊆ Y , with U ⊆ i(X),

such that the image of f over U is contained in the interval (m − ε
r ,m + ε

r ) for
any point y0 ∈ U . For i(x0) = y0 ∈ U since both i−1(U) and V ⊆ X are an open
neighborhood of the point x0, then V ∩ i−1(U) is also an open neighborhood of
point x0. Now, let's take an image of V ∩ i−1(U).

i
(
V ∩ i−1(U)

)
= i(V ) ∩ i(i−1(U)
= i(V ) ∩ U
= (i(V ) ∩ U)
⊆ Uopen

⊆ Y

Thus, i(V ) ∩ U is open subset of Y .
(2) Since the boundedness of the function f ◦ i was not used in (1), the proof is
the same as before. □

Example 1. Let X be a locally compact but non-compact space, and let Xt be
a one-point compacti�cation of X. Let φ(C(Xt)) be de�ned as follows:

φ(C(Xt)) = {g : g ∈ C(X),∃L ∈ R such that ∀ε > 0, g(X −K) ⊆ (L− ε, L+ ε),

for some compact set K ⊂ X.
Then:

(1) I = {φ(f) : f(∞) = 0} is ideal of φ(C(Xt)).
(2) I is an ideal of C∗(X).

Theorem 4. Let X and Y be two topological space, i : X → Y is continuous and
i(X) is a dense subset of Y . If Y ̸= i(X), i : X → i(X) is a homeomorphism and
I = {f ◦ i : f(y) = 0,∀y ∈ (Y − i(X))} ⊆ φ(C(Y )) ⊆ C(X), then I is closed in
C(X).

Proof. Let's take a sequence (gn) ∈ I . Since gn → g is a convergent sequence,

then it is a Cauchy sequence. Then, there is a n ∈ N such that
−
dX(gm, gn) < ε

for every ε > 0 and every m,n > n0. Since (fnoi) = (gn) and (fmoi) = (gm),

then
−
dX(fmoi, fnoi) < ε. Because of the isometry in Lemma 1, the inequality

−
dY (fm, fn) < ε holds. Thus, (fn) is a Cauchy sequence. Since C(Y ) is complete,
then there is a f ∈ C(Y ) such that fn → f . Since (fn ◦ i) ∈ I, it follows that
fn(y) = 0 for all y ∈ Y − i(X). Thus fn → f ⇔ dy (fn, f) → 0. Conversely,
suppose that f(y) = m, where m ̸= 0 and there exists y ∈ Y such that y /∈ i(X).



12 KILINÇ

Then, we have |fn(y)− f(y)| = |0−m| = |−m|. If we choose ε = |m|
2 , the

inequality |fn(y)− f(y)| < ε is not satis�ed. As a result, f(y) = 0 for all y ∈ Y
such that y /∈ i(X). Because of the isometry, dx(fn◦i, f ◦i) → 0. Since fn◦i → f ◦i
and (fn ◦ i) = (gn), we have that gn → f ◦ i. Simultaneously, since gn → g, we
have that g = f ◦ i. As f ◦ i ∈ I, it follows that g also belongs to I. Hence, I is a
closed subspace of C(X). □

Theorem 5. Let X and Y be two topological spaces, i : X → Y is continuous and
i(X) is a dense subset of Y . If Y ̸= i(X), i : X → i(X) is a homeomorphism and
I = {f ◦ i : f(y) = 0,∀y ∈ (Y − i(X))} ⊆ φ(C(Y )) ⊆ C(X), then I is sublattice
of C(X).

Proof. Let take f ◦ i, g ◦ i ∈ I.

(f ◦ i) ∨ (g ◦ i) = 1

2
((f ◦ i) + (g ◦ i) + |(f ◦ i)− (g ◦ i)|)

We know that for every y ∈ Y − i(X), f(y) = g(y) = 0. Since

(f ◦ i)(x) + (g ◦ i)(x) = ((f + g) ◦ i)(x)
and

(f ◦ i)(x)− (g ◦ i)(x) = ((f − g) ◦ i)(x)
then (f + g)(y) = 0 and (f − g)(y) = 0 for every y ∈ Y − i(X). Thus,

(f ◦ i) ∨ (g ◦ i) ∈ I

Similarly, we can show that (f ◦i)∧(g◦i) ∈ I. Hence, I is sub-lattice of C(X). □

Lemma 2. If C(X, τ)− C(X, τ ′) ̸= ∅ then C∗(X, τ)− C∗(X, τ ′) ̸= ∅

Proof. Let f ∈ C(X, τ)− C(X, τ ′). There is at least one point x0 ∈ X such that
f is not τ ′ − τst- continuous at this point. Let f(x0) = a, a ∈ R. For every
neighborhood U of x0, there exists ε0 > 0 such that f(U) ̸⊂ (a− ε0, a+ ε0). By
de�ning

g = (f ∨ (a− ε0)) ∧ (a+ ε0)

the function g becomes τ ′ − τst discontinuous and bounded at the point x0. Now,
let's show this. Suppose that the function g is τ ′ − τst-continuous at the point x0.
Let us set g(x0) = a and consider (a− ε0, a+ ε0) as a neighborhood of a. Then,
there exists a neighborhood U1 of x0 such that g(U1) ⊂ (a− ε0, a+ ε0). Thus,

g(U1) = (f(U1) ∨ (a− ε0)) ∧ (a+ ε0)

⊂ (a− ε0, a+ ε0) .

For every x ∈ U1,

(f(x) ∨ (a− ε0)) ∧ (a+ ε0) ∈ (a− ε0, a+ ε0)

and so
min {max {(f(x), (a− ε0))} , (a+ ε0)} ∈ (a− ε0, a+ ε0)

This can only be achieved by ensuring;

max {(f(x), (a− ε0))} < (a+ ε0)
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and
max {(f(x), (a− ε0))} > (a− ε0)

From this, we conclude that f(x) < a + ε0 and f(x) > a − ε0, which implies
f(x) ∈ (a− ε0, a+ ε0) for all x. Hence, we reach a contradiction because f(U1) ⊂
(a− ε0, a+ ε0) for every x ∈ U1.

□

4. ∗−ideal

In this section, we will de�ne a speci�c ideal and establish the conditions under
which it is not possible to �nd a topology τ ′ ⊂ τ such that A = C(X, τ ′) , by
using this ideal.

De�nition 4.1. Let I ⊂ C(X) be a subalgebra, sub-lattice and closed. If for
every f ∈ I and g ∈ C∗(X), f, g ∈ I, then I is called an ∗− ideal.

De�nition 4.2. For a function f : A → B to be an into function there will be
one or more elements in set B that do not have a pre-image in set A.

Lemma 3. If X is a proper open subset of Y , i : X → Y is an into function, and
Y is a T4 space, then there exists a bounded function f ∈ C(Y ) such that f(x) ̸= 0
for all x ∈ X and I = {f ◦ i : f ∈ C(Y ), f(Y −X) = 0}.

Proof. Let A = {x} be a singleton set for a x ∈ X. A and Y − X are closed.
Furthermore, let g : (Y −X) ∪A → R be de�ned by

g(t) =

{
1, t = x
0, t ∈ Y −X

Now let us show that g is continuous. Let F be a closed subset of R. Since

g−1(F ) =


A ∪ (Y −X) , 0, 1 ∈ F
Y −X, 0 ∈ F, 1 /∈ F
A, 0 /∈ F, 1 ∈ F
∅, 0, 1 /∈ F

then g−1(F ) is closed. Thus g is continuous. Since the function g is bounded
and A ∪ (Y −X) is closed, then according to Tietze's Expansion Theorem g has
a continuous and bounded expansion of f : Y → R. Thus, for every x ∈ X there
is a bounded function f such that f(x) ̸= 0. □

Theorem 6. Let A be a subalgebra, sublattice, and closed subset of C(X, τ) with
A ≠ C(X, τ). If I ⊆ A is a ∗-ideal and there exists f ∈ I such that f(x) ̸= 0 for
all x ∈ X, then it is not possible to �nd a topology τ ′ ⊂ τ such that A = C(X, τ ′).

Proof. Suppose that, there exists a topology τ ′ ⊂ τ such that A = C(X, τ ′).
Let's take a g ∈ C∗(X, τ) − C∗(X, τ ′). Then there is at least one point x0 ∈ X
such that g is not τ ′ − τst-continuous at this point. Let g(x0) = n, n ∈ R. Let
f ∈ I be a function such that f is τ ′-τ -continuous and f(x0) ̸= 0. We can choose
f(x0) = m > 0, since if f(x0) < 0, we can select −f instead of f . There exists
an ε0 > 0 such that m − ε0 > 0. Since f is τ ′ − τst- continuous, there is a
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neighborhood U ∈ τ ′ of x0 such that f(U) ⊂ (m − ε0,m + ε0). Then, f(x) > 0
for all x. The function 1

f is τ ′ − τstd-continuous on the set U . The product of the

functions f.g and 1
f is τ ′ − τstd-continuous on the set U . However, since g is not

continuous at x0, there exists a neighborhood V of g(x0) such that g(U) ̸⊂ V for

any neighborhood U of x0. Since the restriction
(
f.g. 1f

)
|U

= g|U is continuous at

point x0 and U ∈ τ ′, then the function
(
f.g. 1f

)
|U

= g|U is τ ′ − τstd-continuous at

point x0. Then
(
f.g. 1f

)
(x0) = g(x0) = n. There is a neighborhood W of x0 such

that g(W ) ⊂ V for the V neighborhood of n. Since x0 ∈ W ∈ τ ′ and x0 ∈ U ∈ τ ′,
it follows that x0 ∈ U ∩ W = U2. So, x0 has a neighborhood U2 ∈ τ ′ such that
g(U2) ⊂ V , which contradicts the fact that g(U) ̸⊂ V . □

The following example shows that it is not possible to �nd a τ ′ ⊂ τ such that
A = C(X, τ ′).

Example 2. Let A = C∗(X) ⊂ C(X). In this case, there is no τ ′ ⊂ τ such that
C∗(X) = C(X, τ ′).

5. Question

If a topology τ ′ does not exist such that A = C(X, τ ′), is there a larger space
Y containing X such that A = C(Y )?

This problem is open.
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