N-TUPLE ORBITS AND N-TUPLE WEAK ORBITS TENDING TO INFINITY

SONJA MANČEVSKA ${ }^{1}$ AND MARIJA OROVČANEC ${ }^{2}$

Abstract

In this paper we give a sufficient condition for n pairwise commuting and bounded linear operators on an infinite dimensional complex Banach space X, which will imply that the space contains a dense set of vectors each with a corresponding n-tuple orbit tending to infinity. The same condition is sufficient to imply that the product of X and its dual space contains a dense set of pairs, each with a corresponding n-tuple weak orbit tending to infinity.

1. Introduction

Throughout this paper, unless otherwise stated, X will denote a complex, infinite dimensional Banach space, $B(X)$ the algebra of all bounded linear operators on X and X^{*} the dual space of X i.e., the space of all bounded linear functionals $x^{*}: X \rightarrow \mathbb{C}$. As usual, for $x \in X$ and $x^{*} \in X^{*}$ we will denote $\left\langle x, x^{*}\right\rangle:=x^{*}(x)$. For the direct product $X \times X^{*}$ we assume that is a Banach space, in a sense of the direct sum of X and X^{*}, with one of the following norms: $\left\|\left(x, x^{*}\right)\right\|_{\infty}=$ $\max \left\{\|x\|,\left\|x^{*}\right\|\right\}$ or $\left\|\left(x, x^{*}\right)\right\|_{p}=\left(\|x\|^{p}+\left\|x^{*}\right\|^{p}\right)^{1 / p}$ for $1 \leq p<\infty$. \mathbb{Z}_{+}will denote the set of all nonnegative integers and

$$
\mathbb{Z}_{+}^{n}=\left\{\left(k_{1}, k_{2}, \ldots, k_{n}\right): k_{i} \in \mathbb{Z}_{+}, 1 \leq i \leq n\right\} .
$$

If $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$ are pairwise commuting operators, the n-tuple orbit of the vector $x \in X$ (or the orbit of x under the n-tuple $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$) is the set

$$
\begin{equation*}
\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x\right)=\operatorname{Orb}(\mathbf{T}, x)=\left\{T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x:\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}\right\} \tag{1.1}
\end{equation*}
$$

and the n-tuple weak orbit of the pair $\left(x, x^{*}\right) \in X \times X^{*}$ is the set

$$
\begin{align*}
\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x, x^{*}\right) & =\operatorname{Orb}\left(\mathbf{T}, x, x^{*}\right) \\
& =\left\{\left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x, x^{*}\right\rangle:\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}\right\} . \tag{1.2}
\end{align*}
$$

By the definition given in [15], the n-tuple orbit (1.1) tends to infinity if

[^0]$$
\lim _{k_{i} \rightarrow \infty}\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\|=\infty, \text { for every } k_{j} \in \mathbb{Z}_{+}, j \neq i, \text { and every } 1 \leq i \leq n
$$

In [8] and [10] we gave a similar definition for n-tuple weak orbits: the n-tuple weak orbit (1.2) tends to infinity if

$$
\lim _{k_{i} \rightarrow \infty} \mid\left\langle T_{1}^{k_{1}} T_{2}^{\left.k_{2} \ldots T_{n}^{k_{n}} x, x^{*}\right\rangle \mid=\infty, \text { for every } k_{j} \in \mathbb{Z}_{+}, j \neq i, \text { and every } 1 \leq i \leq n ~}\right.
$$

For $n=1$, the sets in (1.1) and (1.2) are sequences of form:

$$
\operatorname{Orb}(T, x)=\left\{T^{n} x: n=0,1,2, \ldots\right\} \subset X
$$

and

$$
\operatorname{Orb}\left(T, x, x^{*}\right)=\left\{\left\langle T^{n} x, x^{*}\right\rangle: n=0,1,2, \ldots\right\} \subset \mathbb{C} .
$$

These sequences are usually referred as single orbit (or simply orbit) of the vector $x \in X$ and single weak orbit (or simply weak orbit) of the pair $\left(x, x^{*}\right) \in X \times X^{*}$ under the operator T, respectively. Clearly, if $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x\right)$ tends to infinity, then $\operatorname{Orb}\left(T_{i}, x\right)$ will also tend to infinity, for every $i \in\{1,2, \ldots, n\}$. The same holds for the weak orbits: if $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x, x^{*}\right)$ tends to infinity, then $\operatorname{Orb}\left(T_{i}, x, x^{*}\right)$ will also tend to infinity, for every $i \in\{1,2, \ldots, n\}$. As corollaries of the main results in [7]-[10], we've obtained that, if $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$ are operators such that $r\left(T_{i}\right)>1$, for all $i \in\{1,2, \ldots, n\}$, then:
(i) X will contain a dense set D such that $\operatorname{Orb}\left(T_{i}, x\right)$ tends to infinity for all $x \in D$ and all $i \in\{1,2, \ldots, n\}$ and if, in addition, the operators $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting and have at least one of the following properties:
(P.1) T_{i} is bounded bellow, for every $i \in\{1,2, \ldots, n\}$,
(P.2) $\left(T_{i}^{k}-T_{j}^{k}\right)_{k \geq 0}$ is a norm bounded sequence, for all $i, j \in\{1,2, \ldots, n\}$, then the m-tuple orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{m}, x\right)$ will tend to infinity, for every $2 \leq$ $m \leq n, 1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$ and $x \in D$,
(ii) $X \times X^{*}$ will contain a dense set D^{\prime} such that $\operatorname{Orb}\left(T_{i}, x, x^{*}\right)$ tends to infinity, for all $\left(x, x^{*}\right) \in D^{\prime}$ and all $i \in\{1,2, \ldots, n\}$ and if, in addition, the operators $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting and have the property (P.2), then the m-tuple weak orbit $\operatorname{Orb}\left(\left\{T_{i_{j}}\right\}_{j=1}^{m}, x, x^{*}\right)$ will tend to infinity for every $2 \leq m \leq n, 1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$ and $x \in D^{\prime}$.
The conditions (P.1) and (P.2) are quite rigorous. Moreover, for any operators $T_{1}, T_{2}, \ldots, T_{n}$ such that $r\left(T_{i}\right)>1, i \in\{1,2, \ldots, n\}$, the condition (P.2) will imply that all these operators must have the same spectral radius. In this paper we are going to show that vectors in X with n-tuple orbits and pairs in $X \times X^{*}$ with n-tuple weak orbits tending to infinity exist whenever $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting operators such that $r\left(T_{i}\right)>1$ for every $i \in\{1,2, \ldots, n\}$, without any additional conditions.

2. Preliminaries

As usual, for a single operator $T \in B(X), \sigma(T), \sigma_{\mathrm{p}}(T)$ and $\sigma_{\text {ap }}(T)$ will denote the spectrum, the point spectrum and the approximate point spectrum of T.

If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting operators on X, the joint approximate point spectrum (or the left approximate spectrum) of \mathbf{T} is the set

$$
\begin{aligned}
\sigma_{\pi}(\mathbf{T})= & \sigma_{\pi}\left(T_{1}, T_{2}, \ldots, T_{n}\right) \\
= & \left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}:(\forall \varepsilon>0)(\exists x \in X) \text { s.t. }\|x\|=1 \wedge\right. \\
& \left.\left\|\left(T_{i}-\lambda_{i}\right) x\right\|<\varepsilon, 1 \leq i \leq n\right\} .
\end{aligned}
$$

For alternative equivalent definitions of the joint approximate point spectrum, we refer to [1], [3] and [11]. For every n-tuple of pairwise commuting operators $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right), \sigma_{\pi}(\mathbf{T})$ is nonvoid and compact set ([3, Property 2$\left.]\right)$, which has the following property, usually referred as the spectral mapping theorem for the joint approximate point spectrum.
Theorem 1. [3, Theorem 1] If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting operators and f is an m-tuple of polynomials in n variables (so that $f(\mathbf{T})$ is defined and is an m-tuple of commuting operators), then $\sigma_{\pi}(f(\mathbf{T}))=f\left(\sigma_{\pi}(\mathbf{T})\right)$.

Clearly, $\sigma_{\mathrm{ap}}(T)=\sigma_{\pi}(T)$ for every operator $T \in B(X)$ and, by [4, Theorem 1],

$$
\begin{equation*}
r(T)=\max \left\{|\lambda|: \lambda \in \sigma_{\mathrm{ap}}(T)\right\}, \text { for every } T \in B(X) \tag{2.1}
\end{equation*}
$$

We also need the following two results.
Theorem 2. [13, Theorem V.37.14] Let X and Y be Banach spaces and $\left(T_{n}\right)_{n \geq 1}$ be a sequence of operators in $B(X, Y)$. Let $\left(a_{n}\right)_{n \geq 1}$ be sequence of positive numbers such that $\sum_{n=1}^{\infty} a_{n}<\infty$. Then there exists $x \in X$ such that $\left\|T_{n} x\right\| \geq a_{n}\left\|T_{n}\right\|$, for all $n \geq 1$. Moreover, it is possible to choose such an x in each ball in X of radius greater than $\sum_{n=1}^{\infty} a_{n}$.
Theorem 3. [13, Theorem V.39.5] Let X and Y be Banach spaces and $\left(T_{n}\right)_{n \geq 1}$ be a sequence of operators in $B(X, Y)$. Let $\left(a_{n}\right)_{n \geq 1}$ be sequence of positive numbers with $\sum_{n=1}^{\infty} a_{n}^{1 / 2}<\infty$. Then there are $x \in X$ and $y^{*} \in Y^{*}$ such that $\left|\left\langle T_{n} x, y^{*}\right\rangle\right| \geq a_{n}\left\|T_{n}\right\|$, for all $n \geq 1$. Moreover, given balls $B \subset X$ and $B^{*} \subset Y^{*}$ of radii greater than $\sum_{n \geq 1} a_{n}^{1 / 2}<\infty$, then it is possible to find $x \in B$ and $y^{*} \in B^{*}$ with this property.

3. N-TUPLE ORbits tending to infinity

Theorem 4. If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting operators on an infinite dimensional complex Banach space X such that $r\left(T_{i}\right)>1$, for every $1 \leq i \leq n$, then there is a dense set $D_{1} \subset X$ such that the n-tuple orbit $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x\right)$ tends to infinity for every $x \in D_{1}$.
Proof. Let $x_{0} \in X$ and $\varepsilon>0$. Since $r\left(T_{i}\right)>1$, for all $1 \leq i \leq n$, by (2.1) there are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ such that $\lambda_{i} \in \sigma_{\text {ap }}\left(T_{i}\right)$ and $\left|\lambda_{i}\right|=r\left(T_{i}\right)>1,1 \leq i \leq n$. Let $q \in \mathbb{R}$ and $C>0$ are such that

$$
\begin{gather*}
1<q<\min \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right\} \tag{3.1}\\
C\left(\frac{q}{q-1}\right)^{n}<\varepsilon \tag{3.2}
\end{gather*}
$$

If $p_{1}<p_{2}<\ldots<p_{n}$ are the first n prime numbers, let $g: \mathbb{Z}_{+}^{n} \rightarrow \mathbb{Z}_{+}$be the injective mapping defined with $g\left(k_{1}, k_{2}, \ldots, k_{n}\right)=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}}$ and let

$$
\begin{gathered}
a_{g\left(k_{1}, k_{2}, \ldots, k_{n}\right)}=\frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}}}>0, \text { for }\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n} \\
S_{g\left(k_{1}, k_{2}, \ldots, k_{n}\right)}=T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}, \text { for }\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}
\end{gathered}
$$

By the first inequality in (3.1) and by (3.2) we have

$$
\begin{aligned}
\sum_{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}} a_{g\left(k_{1}, k_{2}, \ldots, k_{n}\right)} & =\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \ldots \sum_{k_{n}=0}^{\infty} \frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}}} \\
& =C \prod_{i=1}^{n}\left(\sum_{k_{i}=0}^{\infty} \frac{1}{q^{k_{i}}}\right)=C\left(\frac{q}{q-1}\right)^{n}<\varepsilon .
\end{aligned}
$$

Hence, applying Theorem 2 on the sequence $\left\{a_{g\left(k_{1}, k_{2}, \ldots, k_{n}\right)}:\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}\right\}$ and the sequence $\left\{S_{g\left(k_{1}, k_{2}, \ldots, k_{n}\right)}:\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}\right\}$, we can find a vector $x \in X$ such that $\left\|x-x_{0}\right\|<\varepsilon$ and

$$
\begin{align*}
&\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x\right\| \geq \frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}}}\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}\right\| \tag{3.3}\\
&\left.\geq \frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}} r\left(T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}\right), \forall\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n} .} \begin{array}{rl}
\end{array}\right) \\
& \text {. }
\end{align*}
$$

If $\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $p_{k_{1}, k_{2}, \ldots, k_{n}}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is the polynomial defined with,

$$
p_{k_{1}, k_{2}, \ldots, k_{n}}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{n}^{k_{n}}
$$

then, by Theorem 1,

$$
\begin{align*}
\sigma_{\mathrm{ap}}\left(T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}\right) & =\sigma_{\mathrm{ap}}\left(p_{k_{1}, k_{2}, \ldots, k_{n}}\left(T_{1}, T_{2}, \ldots, T_{n}\right)\right) \\
& =p_{k_{1}, k_{2}, \ldots, k_{n}}\left(\sigma_{\pi}\left(T_{1}, T_{2}, \ldots, T_{n}\right)\right) \tag{3.4}\\
& =\left\{z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{n}^{k_{n}}:\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \sigma_{\pi}\left(T_{1}, T_{2}, \ldots, T_{n}\right)\right\} .
\end{align*}
$$

On the other hand, if $p_{i}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ are the polynomials defined with,

$$
p_{i}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{i}, \quad 1 \leq i \leq n
$$

then (again by Theorem 1),

$$
\begin{equation*}
p_{i}\left(\sigma_{\pi}\left(T_{1}, T_{2}, \ldots, T_{n}\right)\right)=\sigma_{\pi}\left(p_{i}\left(T_{1}, T_{2}, \ldots, T_{n}\right)\right)=\sigma_{\text {ap }}\left(T_{i}\right), \text { for all } 1 \leq i \leq n \tag{3.5}
\end{equation*}
$$

Since $\lambda_{i} \in \sigma_{\text {ap }}\left(T_{i}\right),(3.5)$ implies that there are $\mu_{1}^{(i)}, \ldots, \mu_{i-1}^{(i)}, \mu_{i+1}^{(i)}, \ldots, \mu_{n}^{(i)} \in \mathbb{C}$ such that,

$$
\left(\mu_{1}^{(i)}, \ldots, \mu_{i-1}^{(i)}, \lambda_{i}, \mu_{i+1}^{(i)}, \ldots, \mu_{n}^{(i)}\right) \in \sigma_{\pi}\left(T_{1}, T_{2}, \ldots, T_{n}\right) .
$$

Then, by (2.1), (3.3) and (3.4),

$$
\begin{align*}
\| T_{1}^{k_{1}} & T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x \| \\
& \geq \frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}} r\left(T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}\right)} \\
& =\frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}}} \max \left\{|\lambda|: \lambda \in \sigma_{\text {ap }}\left(T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}\right)\right\} \\
& =\frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}}} \max \left\{\left|z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{n}^{k_{n}}\right|:\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \sigma_{\pi}\left(T_{1}, T_{2}, \ldots, T_{n}\right)\right\} \tag{3.6}\\
& \geq C \frac{\left|\lambda_{i}\right|^{k_{i}}}{q^{k_{i}}}\left(\prod_{\substack{j=1 \\
j \neq i}}^{n} \frac{\left|\mu_{j}^{(i)}\right|^{k_{j}}}{q^{k_{i}}}\right), \text { for all }\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n} .
\end{align*}
$$

Since $\left|\lambda_{i}\right|>q$, from (3.6) we obtain that, $\lim _{k_{i} \rightarrow \infty}\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n} x}\right\|=\infty$, for all $k_{j} \in \mathbb{Z}_{+}, j \neq i$. And this holds for every $1 \leq i \leq n$.

Before we state some corollaries of Theorem 4, we'll give one simple example.
Example 3.1. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be the canonical base of $\ell^{1} \equiv \ell^{1}(\mathbb{N})$ and $B: \ell^{1} \rightarrow$ ℓ^{1} be the backward shift,

$$
B e_{n}=\left\{\begin{array}{ll}
0, & \text { if } n=1 \\
e_{n-1}, & \text { if } n \geq 1
\end{array}, \quad n \in \mathbb{N}\right.
$$

For this operator (see, for example [5, Corollary 6.6]),

$$
\sigma_{\mathrm{p}}(B)=\{\lambda \in \mathbb{C}:|\lambda|<1\}
$$

$$
\begin{aligned}
\operatorname{Ker}(B-\lambda)= & \left\{\alpha\left(1, \lambda, \lambda^{2}, \ldots\right): \alpha \in \mathbb{C}\right\}, \text { for every } \lambda \in \sigma_{\mathrm{p}}(B) \\
& \sigma(B)=\{\lambda \in C:|\lambda| \leq 1\}=\sigma_{\text {ap }}(B)
\end{aligned}
$$

Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ and $\lambda_{0} \in \mathbb{C}$ are such that

$$
\begin{equation*}
1<\left|\lambda_{0}\right|^{-1}<a_{1}<a_{2}<\ldots<a_{n} \tag{3.7}
\end{equation*}
$$

and let

$$
T_{i}=a_{i} B, 1 \leq i \leq n
$$

It can be easily verified, directly or by applying the spectral mapping theorems for the spectrum and the approximate point spectrum (the later one can be regarded as a special case of Theorem 1 for one operator and the polynomials $p_{i}: \mathbb{C} \rightarrow \mathbb{C}$ defined with $\left.p_{i}(z)=a_{i} z, 1 \leq i \leq n\right)$ that

$$
\sigma\left(T_{i}\right)=\sigma\left(a_{i} B\right)=\left\{\lambda \in \mathbb{C}:|\lambda| \leq a_{i}\right\}=\sigma_{\mathrm{ap}}\left(a_{i} B\right)
$$

and

$$
\sigma_{\mathrm{p}}\left(T_{i}\right)=\sigma_{\mathrm{p}}\left(a_{i} B\right)=\left\{\lambda \in \mathbb{C}:|\lambda|<a_{i}\right\}
$$

for all $1 \leq i \leq n$.
Clearly, $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting operators. But, none of these operators is bounded below (for example, $\left\|T_{i} e_{1}\right\|=0<C\left\|e_{1}\right\|$, for all $C>0$ and $1 \leq i \leq n$) and they do not satisfy the condition (P.2) (since $r\left(T_{i}\right)=a_{i}>1$, if the operators satisfy (P.2), they will have the same spectral radius, which contradicts (3.7)).

Independently of Theorem 4 we will show that in every open ball in ℓ^{1} there is a vector x such that $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x\right)$ tends to infinity.

Let $y=\left(y_{n}\right)_{n \geq 1} \in \ell^{1}$ and $\varepsilon>0$. By the choice of λ_{0}, there is $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that $\sum_{j=n_{0}+1}^{\infty}\left|y_{j}\right|<\varepsilon / 3$ and $\sum_{j=n_{0}+1}^{\infty}\left|\lambda_{0}\right|^{j-1}<\varepsilon / 3$. Let

$$
x_{\lambda_{0}}=\left(y_{1}, \ldots, y_{n_{0}}, \lambda_{0}^{n_{0}}, \lambda_{0}^{n_{0}+1}, \ldots\right)=\sum_{j=1}^{n_{0}} y_{j} e_{j}+\sum_{j=n_{0}+1}^{\infty} \lambda_{0}^{j-1} e_{j} .
$$

Then,

$$
\left\|y-x_{\lambda_{0}}\right\|=\sum_{j=n_{0}+1}^{\infty}\left|y_{j}-\lambda_{0}^{j-1}\right| \leq \sum_{j=n_{0}+1}^{\infty}\left|y_{j}\right|+\sum_{j=n_{0}+1}^{\infty}\left|\lambda_{0}\right|^{j-1}<\varepsilon,
$$

and, if $\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ is such that $k_{1}+k_{2}+\ldots+k_{n} \geq n_{0}$,

$$
\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x_{\lambda_{0}}\right\|=\left\|a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{n}^{k_{n}} B^{k_{1}+k_{2}+\ldots+k_{n}} x_{\lambda_{0}}\right\|=a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{n}^{k_{n}} \frac{\left|\lambda_{0}\right|^{k_{1}+k_{2}+\ldots+k_{n}}}{1-\left|\lambda_{0}\right|}
$$

Since (3.7) implies that $a_{i}\left|\lambda_{0}\right|>1$, for all $1 \leq i \leq n$, we have

$$
\begin{aligned}
\lim _{k_{i} \rightarrow \infty}\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x_{\lambda_{0}}\right\| & =\left[\frac{1}{1-\left|\lambda_{0}\right|} \prod_{\substack{j=1 \\
j \neq i}}^{n}\left(a_{j}\left|\lambda_{0}\right|\right)^{k_{j}}\right] \lim _{k_{i} \rightarrow \infty}\left(a_{i}\left|\lambda_{0}\right|\right)^{k_{i}} \\
& =\infty, \text { for all } k_{1}, \ldots, k_{i-i}, k_{i+i} \ldots, k_{n} \in \mathbb{Z}_{+} .
\end{aligned}
$$

Remark 3.1: For the vector $x_{\lambda_{0}}$ in the previous example $\operatorname{Orb}\left(a_{i} B, x_{\lambda_{0}}\right)$ tends to infinity for every $1 \leq i \leq n$. But the operators $a_{1} B, a_{2} B, \ldots, a_{n} B$ do not share the same set of vectors such that each one of them has an orbit tending to infinity under each of the operators. For example, if $\mu \in \mathbb{C}$ is such that $a_{1} \leq|\mu|^{-1}<a_{2}$, and x_{μ} is the vector constructed in a similar way as $x_{\lambda_{0}}$, i.e.

$$
x_{\mu}=\left(y_{1}, \ldots, y_{n_{1}}, \mu^{n_{1}}, \mu^{n_{1}+1}, \ldots\right)=\sum_{j=1}^{n_{1}} y_{j} e_{j}+\sum_{j=n_{1}+1}^{\infty} \mu^{j-1} e_{j}
$$

for some sufficiently large n_{1}, then $\operatorname{Orb}\left(\left\{a_{i} B\right\}_{i=2}^{n}, x_{\mu}\right)$ and, consequently $\operatorname{Orb}\left(a_{i} B, x_{\mu}\right)$, will tend to infinity, for each $2 \leq i \leq n$. $\operatorname{But} \operatorname{Orb}\left(a_{1} B, x\right)$ does not tend to infinity:

$$
\left\|T_{1}^{k_{1}} x_{\mu}\right\|=a_{1}^{k_{1}}\left\|B^{k_{1}} x_{\mu}\right\|=\frac{a_{1}^{k_{1}}|\mu|^{k_{1}}}{1-|\mu|}, \text { for all } k_{1}>n_{1}
$$

and consequently, since $a_{1} \leq|\mu|^{-1}$,

$$
\lim _{k_{1} \rightarrow \infty}\left\|T_{1}^{k_{1}} x_{\mu}\right\|=\lim _{k_{1} \rightarrow \infty} \frac{a_{1}^{k_{1}}|\mu|^{k_{1}}}{1-|\mu|}= \begin{cases}\frac{1}{1-|\mu|}, & \text { if } a_{1}=|\mu|^{-1} \\ 0, & \text { if } a_{1}<|\mu|^{-1}\end{cases}
$$

Remark 3.2: $T \in B(X)$ is hypercyclic operator if there is a vector $x \in X$ such that $\operatorname{Orb}(T, x)$ is dense in X. The vector x with this property is said to be hypercyclic vector for T. If T is hypercyclic operator, then the set of all hypercyclic vectors for T is dense G_{δ} set in X ([2, Lemma III.5.1], [13, Theorem V.38.2]). By definition, the n-tuple of pairwise commuting operators $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is a hypercyclic
n-tuple if the there is a vector $x \in X$ such that $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x\right)$ is dense in X ([6]). If at least one of the operators $T_{1}, T_{2}, \ldots, T_{n}$ is hypercyclic, or the semigroup generated by $T_{1}, T_{2}, \ldots, T_{n}$ i.e., $\mathcal{T}=\left\{T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}:\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}\right\}$, contains a hypercyclic operator S (which may occur even if none of the operators $T_{1}, T_{2}, \ldots, T_{n}$ is hypercyclic, a simple example will be $\mathbf{T}=\left(2 I, 2^{-1} B\right)$, where I is the identity operator, B the backward shift on ℓ^{1} and $\left.S=(2 I)^{2} \cdot\left(2^{-1} B\right)=2 B\right)$, then the n tuple $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is hypercyclic ([6, Proposition 2.1]). By [14, Theorem 1], each of the operators $T_{i}=a_{i} B, 1 \leq i \leq n$, in Example 3.1 hypercyclic. Hence $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is a hypercyclic n-tuple and ℓ^{1} will contain at least one dense G_{δ} set of vectors x such that,

$$
\operatorname{Orb}\left(\left\{a_{i} B\right\}_{i=1}^{n}, x\right)=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{n}^{k_{n}} B^{k_{1}+k_{2}+\ldots+k_{n}} x:\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}\right\}
$$

is dense in ℓ^{1}.
Corollary 4.1. If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting operators on an infinite dimensional complex Banach space X such that $r\left(T_{i}\right)>1$ for all $1 \leq i \leq n$, then there is a dense set $D_{1}^{*} \subset X^{*}$ such that the n-tuple orbit $\operatorname{Orb}\left(\left\{T_{i}^{*}\right\}_{i=1}^{n}, x^{*}\right)$ tends to infinity for every $x^{*} \in D_{1}^{*}$.
Proof. If $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting operators on X, so will be their Banach space adjoints $T_{1}^{*}, T_{2}^{*}, \ldots, T_{n}^{*} \in B\left(X^{*}\right)$. Having in mind that T^{*} has the same spectrum as T and hence, $r\left(T^{*}\right)=r(T)$, the conclusion follows by Theorem 4.

Corollary 4.2. If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting invertible operators on an infinite dimensional complex Banach space X such that,

$$
\begin{equation*}
\{\lambda \in \mathbb{C}:|\lambda|>1\} \cap \sigma\left(T_{i}\right) \neq \varnothing \neq\{\lambda \in \mathbb{C}:|\lambda|<1\} \cap \sigma\left(T_{i}\right) \tag{3.8}
\end{equation*}
$$

for all $1 \leq i \leq n$, then there is a dense set $D_{1}^{(1)} \subset X$ such that the $2 n$-tuple orbit $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n} \cup\left\{T_{i}^{-1}\right\}_{i=1}^{n}, x\right)$ tends to infinity, for every $x \in D_{1}^{(1)}$.
Proof. If $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting invertible operators on X, then $T_{1}^{-1}, T_{2}^{-1}, \ldots, T_{n}^{-1}$ will also pairwise commute and

$$
T_{i} T_{j}^{-1}=T_{j}^{-1} T_{j} T_{i} T_{j}^{-1}=T_{j}^{-1} T_{i} T_{j} T_{j}^{-1}=T_{j}^{-1} T_{i}
$$

for all $i, j \in\{1,2, \ldots, n\}$. Since $\sigma\left(T^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma(T)\right\}$ for every invertible operator $T \in B(X)$, if $T_{1}, T_{2}, \ldots, T_{n}$ satisfy the conditions in (3.8), then $r\left(T_{i}\right)>1$ and $r\left(T_{i}^{-1}\right)>1$, for all $1 \leq i \leq n$, and the conclusion follows from Theorem 4.

Remark 3.3: Every invertible operator $T \in B(X)$ is bounded below:

$$
\|T x\| \geq\left\|T^{-1}\right\|-1\|x\|, \text { for every } x \in X
$$

Hence, if $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting invertible operators, then the operators $T_{1}, T_{2}, \ldots, T_{n}, T_{1}^{-1}, T_{2}^{-1}, \ldots, T_{n}^{-1}$ will satisfy the condition (P.1). If, in addition,
the operators satisfy the conditions in (3.8), then the conclusion in Corollary 4.2 can be derived from [7, Theorem 2.2].

In the next two corollaries we assume that T^{*} denotes the Hilbert space adjoint of the operator T.

Corollary 4.3. If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting operators on an infinite dimensional complex Hilbert space H such that $r\left(T_{i}\right)>1$ for all $1 \leq i \leq n$, then there is a dense set $D_{1}^{(2)} \subset H$ such that the n-tuple orbit $\operatorname{Orb}\left(\left\{T_{i}^{*}\right\}_{i=1}^{n}, x\right)$ tends to infinity for every $x \in D_{1}^{(2)}$.

Proof. If $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting operators on H, then the corresponding Hilbert space adjoints $T_{1}^{*}, T_{2}^{*}, \ldots, T_{n}^{*} \in B(H)$ will also commute pairwise. Since the spectrum of a Hilbert space adjoint T^{*} of an operator $T \in B(H)$ satisfies $\sigma\left(T^{*}\right)=\{\bar{\lambda}: \lambda \in \sigma(T)\}$ and hence, $r\left(T^{*}\right)=r(T)$, the conclusion follows by Theorem 4.
Corollary 4.4. If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting normal operators on an infinite dimensional complex Hilbert space H such that $r\left(T_{i}\right)>1$ for all $1 \leq i \leq n$, then there is a dense set $D_{1}^{(3)} \subset H$ such that the $2 n$-tuple orbit $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n} \cup\left\{T_{i}^{*}\right\}_{i=1}^{n}, x\right)$ tends to infinity for every $x \in D_{1}^{(3)}$.

Proof. If $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise commuting normal operators on H then, by the Fuglede-Putnam theorem $T_{1}, T_{2}, \ldots, T_{n}, T_{1}^{*}, T_{2}^{*}, \ldots, T_{n}^{*}$ will be pairwise commuting normal operators on X. Since $r\left(T^{*}\right)=\left\|T^{*}\right\|=\|T\|=r(T)$ for every normal operator $T \in B(H)$, the conclusion follows from Theorem 4 .

4. N-TUPLE WEAK ORbITS TENDING TO INFINITY

In the section we are going to give only the corresponding result of Theorem 4 for n-tuple weak orbits.

Theorem 5. If $\mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is an n-tuple of pairwise commuting operators on an infinite dimensional complex Banach space X such that $r\left(T_{i}\right)>1$ for all $1 \leq i \leq n$, then there is a dense set $D_{2} \subset X \times X^{*}$ such that the n-tuple weak orbit $\operatorname{Orb}\left(\left\{T_{i}\right\}_{i=1}^{n}, x, x^{*}\right)$ tends to infinity for every $\left(x, x^{*}\right) \in D_{2}$.
Proof. Let $\left(x_{0}, x_{0}^{*}\right) \in X \times X^{*}$ and $\varepsilon>0$. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ are as in the proof of Theorem 4 , let $q \in \mathbb{R}$ and $C>0$ are such that,

$$
1<q<q^{2}<\min \left\{\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|\right\}
$$

and

$$
C\left(\frac{q}{q-1}\right)^{n}<\frac{\varepsilon}{2^{1 / p}}
$$

assuming that $p=\infty$ if the norm on $X \times X^{*}$ is the max-norm. Now, let

$$
a_{g\left(k_{1}, k_{2}, \ldots, k_{n}\right)}=\frac{C^{2}}{q^{2\left(k_{1}+k_{2}+\ldots+k_{n}\right)}}>0, \text { for }\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}
$$

where $g: \mathbb{Z}_{+}^{n} \rightarrow \mathbb{Z}_{+}$is as in the proof of Theorem 4. Then

$$
\sum_{\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}} a_{g\left(k_{1}, k_{2}, \ldots, k_{n}\right)}^{1 / 2}=\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \ldots \sum_{k_{n}=0}^{\infty} \frac{C}{q^{k_{1}+k_{2}+\ldots+k_{n}}}=C\left(\frac{q}{q-1}\right)^{n}<\frac{\varepsilon}{2^{1 / p}}
$$

and, by Theorem 3, there are $x \in X$ and $x^{*} \in X^{*}$ such that,

$$
\begin{equation*}
\left\|x-x_{0}\right\|<\frac{\varepsilon}{2^{1 / p}},\left\|x^{*}-x_{0}^{*}\right\|<\frac{\varepsilon}{2^{1 / p}}, \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x, x^{*}\right\rangle\right| \geq \frac{C^{2}}{q^{2\left(k_{1}+k_{2}+\ldots+k_{n}\right)}}\left\|T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}}\right\| \tag{4.2}
\end{equation*}
$$

for all $\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$. By (4.1), in both cases, $1 \leq p<\infty$ and $p=\infty$, we have

$$
\left\|\left(x, x^{*}\right)-\left(x_{0}, x_{0}^{*}\right)\right\|_{p}=\left\|\left(x-x_{0}, x^{*}-x_{0}^{*}\right)\right\|_{p}<\varepsilon,
$$

and, if $\mu_{1}^{(i)}, \ldots, \mu_{i-1}^{(i)}, \mu_{i+1}^{(i)}, \ldots, \mu_{n}^{(i)} \in \mathbb{C}$ are as in the proof of Theorem 4, by (4.2) we have

$$
\begin{equation*}
\left|\left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x, x^{*}\right\rangle\right| \geq C \frac{\left|\lambda_{i}\right|^{k_{i}}}{q^{2 k_{i}}}\left(\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{\left|\mu_{j}^{(i)}\right|^{k_{j}}}{q^{2 k_{i}}}\right) \tag{4.3}
\end{equation*}
$$

for all $\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$. Since $\left|\lambda_{i}\right|>q^{2}$, from (4.3) we obtain that, for every $1 \leq i \leq n, \lim _{k_{i} \rightarrow \infty}\left|\left\langle T_{1}^{k_{1}} T_{2}^{k_{2}} \ldots T_{n}^{k_{n}} x, x^{*}\right\rangle\right|=\infty$, for all $k_{j} \in \mathbb{Z}_{+}, j \neq i$.

References

[1] H. Baklauti, K. Feki, On joint spectral radius of commuting operators in Hilbert spaces, Linear Algebra Appl. Vol. 557 (2018), 455-463.
[2] B. Beauzamy, Introduction to operator theory and invariant subspaces, North Holland Math. Library 47, North Holland, Amsterdam, 1988
[3] M.-D. Choi, C. Davis, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., Vol. 80, No. 2 (1974), 317-321.
[4] M. Chō, W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (2) (1992), 251-258.
[5] J. B. Conway, A Course in Functional Analysis, Springer-Verlag Inc., New York, 1985
[6] N.S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Appl., 346 (2008), 82-98.
[7] S. Mančevska, M. Orovčanec, N-Tuple Orbits tending to infinity, Proceedings of the CODEMA 2020 (2021), 24-31.
[8] S. Mančevska, M. Orovčanec, N-Tuple Weak Orbits Tending to Infinity for Banach Space Operators, Proceedings of the First Western Balkan Conference on Mathematics and Applications, 10-12-June 2021, Prishtine, Kosovo (2021), 76-83.
[9] S. Mančevska, N-Tuple Orbits tending to infinity for Hilbert space operators, Mat. Bilten 45. No. 2 (2021), 143-148.
[10] S. Mančevska, M. Orovčanec, N-Tuple Weak Orbits Tending to Infinity for Hilbert Space Operators, Proceedings of the CODEMA 2022 (2023), 27-34.
[11] S. Mančevska, M. Orovčanec, Orbits tending to infinity under sequences of operators on Banach spaces II, Math. Maced., Vol. 5 (2007), 57-61.
[12] V. Müller, A. Soltysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992) 329-333.
[13] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, (2nd ed.), Operator Theory: Advances and Applications Vol. 139, Birkhäuser Verlag AG, Basel - Boston - Berlin, 2007
[14] S. Rolewicz, On orbits of elements, Stud. Math., 32 (1969), 17-22.
[15] A. Tajmouati, Y. Zahouan, Orbit of tuple of operators tending to infinity, International Journal of Pure and Applied Mathematics Vol. 110, No. 4 (2016), 651-656.

SONJA MANČEVSKA
University "St. Kliment Ohridski"
Faculty of Information and Communication Technologies, Studentska b.b., Bitola, North Macedonia
Email address: sonja.manchevska@uklo.edu.mk
Marija Orovčanec
University of Ss. Cyril and Methodius in Skopje,
Faculty of Natural Sciences and Mathematics,
Arhimedova 3, Skopje, North Macedonia
Email address: marijaor@pmf.ukim.mk
Received 4.9.2023
Revised 16.10.2023
Accepted 16.10.2023

[^0]: 2010 Mathematics Subject Classification. Primary: 47A05 Secondary: 47A11, 47A25.
 Key words and phrases. Banach spaces, bounded linear operators, n-tuple orbits, n-tuple weak orbits, spectral radius, approximate point spectrum, joint approximate point spectrum.

