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HYPER QUASI-ORDERED RESIDUATED SYSTEMS

DANIEL ABRAHAM ROMANO

Abstract. The concept of quasi-ordered residuated systems as a general-
ization of both quasi-ordered residuated lattices and hoop-algebras was de-
veloped in 2018 by Bonzio and Chajda. In this paper, we apply the hyper
structure theory to quasi-ordered residuated systems and we introduce the
notion of hyper quasi-ordered residuated system which is a generalization of
quasi-ordered residuated systems on the one hand and a generalization of
both hyper quasi-ordered residuated lattices and hyper hoop-algebra, on the
other hand, and we investigate some of their related properties. In addition
to the previous one, the concept of deductive systems and concept of �lters in
this algebraic structure are presented and analyzed as well as the connections
between them.

1. Introduction

Hyper structure theory was introduced in 1934 in [10], when F. Marty at the
8th congress of scandinavian mathematicians, gave the de�nition of hypergroup
and illustrated some applications and showed its utility in the study of groups,
algebraic functions, and rational fractions. Till now, the hyper structures have
been studied from the theoretical point of view for their applications to many
subjects of pure and applied mathematics. Some �elds of applications of the
mentioned structures are lattices, graphs, coding, ordered sets, median algebra,
automata, and cryptography (see, for example [9]). Many researchers have worked
on this area. For example, R. A. Borzooei et al. in [4, 5, 6] introduced and
studied hyper hoop algebras. In addition to the previous one, the concept of
hyper residuated lattices was studied for instance, in [2, 3, 17].

Quasi-ordered residuated system is a commutative residuated integral monoids
ordered under a quasi-order, introduced by S. Bonzio and I. Chajda in [1]. In
the last few years, the theory of quasi-ordered residuated systems was enriched
with more results on ideals and �lters in them (for example, see [11, 12, 14, 15]).
This algebraic structure is a generalization of both residuated lattices and hoop-
algebras.
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In this paper we construct and introduce the notion of hyper quasi-ordered
residuated system which is a generalization of quasi-ordered residuated systems,
on the one hand, and a generalization of hyper hoop-algebras and hyper residuated
lattices, on the other. Then we study some properties of this structure. We
also introduce the notion of (strong) deductive system and the notion of (strong)
�lter on hyper quasi-ordered residuated systems, and give several properties of
them. Section 2 enables a potential reader to feel comfortable reading the material
presented in Section 3, which is the main part of this work. Section 3 has two
parts: In subsection 3.1 the concept of hyper quasi-ordered residuated systems is
introduced and analyzed. In subsection 3.2 the concept of deductive systems and
the concept of �lters in a hyper quasi-ordered residuated system are introduced and
analyzed. In this paper, the concepts of strong deductive systems and strong folters
in a hyper quasi-ordered residuated system appear, which are not found in either
hyper residuated lattices or hyper hoop-algebras. The paper also discusses the
minimality (maximality) of these substructures in hyper quasi-ordered residuated
systems.

2. Preliminaries

In this section, the necessary notions and notations and some of their interrela-
tionships, mostly taken from papers [1, 11, 12, 16], are listed in the order to enable
a reader to comfortably follow the presentation in this report. It should be pointed
out here that the notations for logical conjunction, logical implication and others
have a literal meaning. Thus, for example, the label H ⊨ Q has the meaning that
the consequent Q can be demonstrated from the hypothesis H. The notation =:
in the formula A =: B serves to indicate that A in it is the abbreviation for the
formula B.

2.1. Concept of quasi-ordered residuated systems. In article [1], Bonzio and
Chajda introduced and analyzed the concept of residual relational systems.

De�nition 2.1 ([1], De�nition 2.1). A residuated relational system is a structure
A =: ⟨A, ·,→, 1, R⟩, where ⟨A, ·,→, 1⟩ is an algebra of type ⟨2, 2, 0⟩ and R is a
binary relation on A and satisfying the following properties:

(1) (A, ·, 1) is a commutative monoid,
(2) (∀x ∈ A)((x, 1) ∈ R),
(3) (∀x, y, z ∈ A)((x · y, z) ∈ R ⇐⇒ (x, y → z) ∈ R).

We will refer to the operation · as (commutative) multiplication, to → as its
residuum and to condition (3) as residuation.

Recall that a quasi-order relation ′ ≼ ′ on a set A is a binary relation which is
re�exive and transitive.

De�nition 2.2 ([1]). A quasi-ordered residuated system is a residuated relational
system A =: ⟨A, ·,→, 1,≼⟩, where ≼ is a quasi-order relation in the monoid (A, ·)

The following proposition shows the basic properties of quasi-ordered residuated
systems.
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Proposition 2.1 ([1], Proposition 3.1). Let A be a quasi-ordered residuated sys-
tem. Then

(4) The operation '·' preserves the pre-order in both positions;

(∀x, y, z ∈ A)(x ≼ y =⇒ (x · z ≼ y · z ∧ z · x ≼ z · y));
(5) (∀x, y, z ∈ A)(x ≼ y =⇒ (y → z ≼ x → z ∧ z → x ≼ z → y));
(6) (∀y, z ∈ A)(x · (y → z) ≼ y → x · z);
(7) (∀x, y, z ∈ A)(x · y → z ≼ x → (y → z));
(8) (∀x, y, z ∈ A)(x → (y → z) ≼ x · y → z);
(9) (∀x, y, z ∈ A)(x → (y → z) ≼ y → (x → z));
(10) (∀x, yz ∈ A)((x → y) · (y → z) ≼ x → z);
(11) (∀x, y ∈ A)((x · y ≼ x) ∧ (x · y ≼ y));
(12) (∀x, y, z ∈ A)(x → y ≼ (y → z) → (x → z));
(13) (∀x, y, z ∈ A)(y → z ≼ (x → y) → (x → z)).

It is generally known that a quasi-order relation ≼ on a set A generates a
equivalence relation ≡≼:=≼ ∩ ≼−1 on A. Due to properties (4) and (5), this
equality relation is compatible with the operations in A. Thus, ≡≼ is a congruence
on A.

In the light of the previous note, it is easy to see that the following applies:
(7) and (8) give:
(14) (∀x, y, z ∈ A)(x · y → z ≡≼ x → (y → z)).

Due to the universality of formula (9) (or, due to the commutativity of the multi-
plication from (14)), we have:

(15) (∀x, y, z ∈ A)(x → (y → z) ≡≼ y → (x → z)).
Also, from (11) and (2), it follows

(16) (∀x ∈ A)(x → x ≡≼ 1)
In the general case,

(17) (∀x, y ∈ A)(x ≼ y ⇐⇒ x → y ≡≼ 1)
is valid, which is obtained by referring to (11) and (2).

From the previous analysis it can be concluded that a quasi-ordered residu-
ated system is a generalization of a hoop-algebra (in the sense of [7]) because the
following formula

(∀x, y ∈ A)(x · (x → y) ≡≼ y · (y → x))

does not have to be a valid formula in the observed algebraic structure in the gen-
eral case. Since the axioms by which the hoop algebra is determined are mutually
independent, there must be a model that satis�es the conditions (1), (2) and (3)
but it does not satisfy the mentioned condition.

A quasi-ordered residuated system A is said to be a strong quasi-ordered resid-
uated system ([13], De�nition 6) if additionally the following

(18) (∀x, y ∈ A)((x → y) → y ≡≼ (y → x) → x)

is valid. If we recall that a hoop is a Weisberg hoop if condition (18) is added to the
axioms that determine the concept of hoops, then we can conclude that a strong
quasi-ordered residuated system is a generalization of Weisberg hoops. It is well
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known that the underlying ordering of a Weisberg hoop is a lattice ordering, and
that the join is term-de�nable by a ⊔ b =: (a → b) → b. Since any hoop satis�es
the equation ([8]) (a → b) → (b → a) = b → a, any Weisberg hoop satis�es the
pre-linearity condition (a → b) ⊔ (b → a) = 1. However, a strong quasi-ordered
residuated system, in the general case, does not have to satisfy the pre-linearity
condition.

2.2. Concept of �lters. The concept of �lters in a quasi-ordered residuated sys-
tem was introduced in the article [11]. This concept is somewhat di�erent from
the �lter concept in both hoop-algebras and residuated lattices.

De�nition 2.3 ([11], De�nition 3.1). For a subset F of a quasi-ordered residuated
system A we say that it is a �lter of A if it satis�es conditions

(F2) (∀u, v ∈ A)((u ∈ F ∧ u ≼ v) =⇒ v ∈ F ), and
(F3) (∀u, v ∈ A)((u ∈ F ∧ u → v ∈ F ) =⇒ v ∈ F ).

Let it note that the empty subset of A satis�es the conditions (F2) and (F3).
Therefore, ∅ is a �lter in A. It is shown ([11], Proposition 3.4 and Proposition 3.2),
that if a non-empty subset F of a quasi-ordered system A satis�es the condition
(F2), then it also satis�es the following conditions

(F0) 1 ∈ F and
(F1) (∀u, v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F )).

Also, it can be seen without di�culty that

((F3) ∧ F ̸= ∅) =⇒ (F2)

is valid. Indeed, if (F3) holds, then the formula u ∈ F ∧ u ≼ v, can be transformed
into the formula u ∈ F ∧ u → v ≡≼ 1 ∈ F by (F0) so from here, according to
(F3), the validity of implication (F2) can be demonstrated. However, the reverse
does not have to be valid.

If F(A) is the family of all �lters in a QRS A, then F(A) is a complete lattice
([11], Theorem 3.1).

In the papers [14, 15], prime and irreducible �lters in strong quasi-ordered
residuated systems and their mutual relations are considered.

The reader can �nd several examples of this algebraic system in the articles
[11, 12, 15, 16].

2.3. A few words about hyper structures. Now, we recall some basic notions
of the hypergroup theory from [9]: Let H be a non-empty set. A hypergroupoid
is a pair (H, ◦), where ◦ : H × H −→ P(H) \ {∅} is a binary hyperoperation
on H. If a ◦ (b ◦ c) = (a ◦ b) ◦ c holds, for all a, b, c ∈ H then (H, ◦) is called a
semihypergroup, and it is said to be commutative if ◦ is commutative. An element
1 ∈ H is called a unit, if a ∈ (1 ◦ a) ∩ (a ◦ 1), for all a ∈ H and it is called a
scalar unit, if {a} = 1 ◦ a = a ◦ 1, for all a ∈ H. Note that if A,B ⊆ H, then
A ◦B =

∪
a∈A, b∈B(a ◦ b).

In addition to the previous one, in what follows the following notations will also
be used ([3]):
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Let (H,≼) be a quasi-ordered set and A,B be two subsets of H. Then we write
- A ≪ B if there exist a ∈ A and b ∈ B such that a ≼ b.
- A ≼ B if for any a ∈ A, there exists b ∈ B such that a ≼ b.
- We will write A ≼ b instead of A ≼ {b}.

In light of the foregoing determination, we have x ≼ y if and only if {x} ≼ {y}.
Also, we will write a ≪ B instead of {a} ≪ B.

One can easily conclude that the relation ≼ is a quasi-order on P(H). Indeed,
since re�exivity is obvious, let's show transitivity. Let A,B,C ⊆ H be such that
A ≼ B and B ≼ C. Then for any a ∈ A there exists an element b = b(a) ∈ B
such that a ≼ b(a) and for any b ∈ B there exists an element c = c(b) ∈ C such
that b ≼ c(b). So, for any a ∈ A there exists an element c = c(b(a)) ∈ C such
that a ≼ c. This means that A ≼ C. In the general case, this relation is not
antisymmetric.

Also, it is easy to see that A ≼ B =⇒ A ≪ B. In addition to the previous one,
the following applies

(∀a ∈ H)(∀b ⊆ H)(a ≪ B ⇐⇒ a ≼ B).

In the special case, for B = {b}, we have (∀a, b ∈ H)(a ≪ b ⇐⇒ a ≼ b). Finally,
let's point out that the following holds

(∀a ∈ H)(∀B ⊆ H)(a ∈ B =⇒ (a ≼ B ∧ a ≪ B)).

Also ∅ ̸= A ⊆ B =⇒ B ≪ A holds for A,B ⊆ H. Indeed, A ⊆ B means
that (∀a ∈ H)(a ∈ A =⇒ a ∈ B) holds. Therefore, one can �nd b ∈ B such that
b ∈ A. Since b ≼ b, we have B ≪ A.

3. The main results

Section 3 is the main part of this paper. In the subsection 3.1 we introduce the
concept of hyper quasi-ordered residuated systems (De�nition 3.1) and we prove
some of their fundamental properties (Theorem 1 and Theorem 2). Subsection
3.2 is devoted to the concept of �lters in this newly determined class of algebraic
structures. The concept of �lters in quasi-ordered residuated systems, which we
introduce in Subsection 3.2, is somewhat di�erent from the concept of �lters in
structures with which we associate this newly introduced algebraic structure (hy-
per residuated lattices and hyper hoop-algebras). In this case, in the determination
of the (strong) �lter F in the hyper quasi-ordered residuated system hA, we will
omit the requirement

(∀x, y ∈ A)((x ∈ F ∧ y ∈ F ) =⇒ x ◦ y ∈ F ).

What precedes that determination is the analysis of the conditions imposed on
the subset F of a hyper quasi-ordered residuated system hA in order for it to be
a (strong) �lter in hA as well as their interconnections. The mentioned analysis is
presented through several lemmas and propositions that precede the de�nition of
(strong) �lters.
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3.1. Concept of hyper QRSs. The concept of hyper quasi-ordered redissued
systems is introduced by the following de�nition.

De�nition 3.1. A hyper quasi-ordered residuated system

hA =: (A, ◦, 1,→,≼),

quasi hyper QRS (by brie�y), is a non-empty quasi-ordered set (A,≼) endowed
with two binary hyper operations ◦ and → and the element 1 such that satisfying
the following conditions:

(H1) (A, ◦, 1) is a commutative semihypergroup with 1 as the unit.
(H0) (∀x ∈ A)(x ∈ 1 ◦ x).
(H2) (∀x ∈ A)(x ≼ 1).
(H3) (∀x, y, z ∈ A)(x ◦ y ≪ z ⇐⇒ x ≪ y → z).

We will denote this system of axioms by H. With [H] we will denote everything
that has been demonstrated using these axioms (the so-called theory developed over
these axioms) up to the place of using this notation.

Example 3.1. Any hyper residuated lattice (determined as in the article [3], for
example) is a hyper quasi-ordered residuated system.

Example 3.2. Any hyper hoop-algebra (determined as in the article [4]) is a hyper
quasi-ordered system.

Example 3.3. Let A = ⟨−∞, 1] (⊆ R). Then (A,⩽) with the natural ordering
is a partially ordered set. De�ne the hyperoperations ◦ and → on A as follows:
a ◦ b =: min{a, b} and a → b =: {1} if a ⩽ b and a → b =: [b, 1] if b < a. It is not
di�cult to check that (A, ◦, 1,→,⩽) is a hyper (quasi-)ordered residuated system.

Example 3.4. Let A = ⟨∞, 1] (⊆ R). De�ne the hyper operations ◦ and → on A
as follows:

(∀x, y ∈ A)(x ◦ y = {1, x, y}) and
(∀x, y ∈ A)((x ⩽ y =⇒ x → y = {1, y}) ∧ (y < x =⇒ x → y = {y})).

Then (A, ◦, 1,→,⩽) is a (quasi-)orderd residuated system.

Example 3.5. Let B =: {xi : i ∈ N} and A = B ∪ {1} with

(∀i ∈ N)(xi ̸= 1), (∀i ∈ N)((xi ≼ 1) ∧ (xi ≼ xi)) and 1 ≼ 1.

De�ne binary hyperoperations ◦ and → on A as follows:

(∀a, b ∈ A)(a ◦ b =: {x ∈ A : a ≼ x ∧ b ≼ x})

and
a ≼ b =⇒ a → b =: {1},
(a = 1 ∧ b ∈ B) =⇒ a → b =: B,
(a = xi ∧ b = xj ̸= a) =⇒ a → b =: {xk : k ∈ N ∧ k ⩽ max{i, j}} ∪ {1}

for all a, b ∈ A. With a little more e�ort, it can be veri�ed that (A, ◦, 1,≼,→) is
a hyper (quasi-)ordered residuated system.

Example 3.6. Let A =: {a, b, c, 1} be a chain such that a < b < c < 1. Let us
de�le the hyper operations as follows
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→ 1 a b c

1 {1} {a,1} {b} {c,1}
a {1} {1} {1} {1}
b {1} {b,c,1} {b,1} {1}
c {1} {b,1} {b} {c,1}

and

◦ 1 a b c

1 {a,b,c,1} {a} {a,b} {a,b,c}
a {a} {a} {a} {a}
b {a,b} {a} {a,b} {a,b}
c {a,b,c} {a} {a,b} {a,b,c}

Routine calculations show that (A, ◦, 1,→,⩽) is a hyper (quasi-)ordered residuated
system.

The following two theorems list some of the important fundamental features of
this hyper system.

Theorem 1. In any hyper quasi-ordered residuated system (A, ◦, 1,→,≼), the
following holds:

(a) (∀B ⊆ A)(1 ≪ B =⇒ 1 ∈ B).
(b) (∀x, y ∈ A)(x ≼ y =⇒ 1 ∈ x → y).
(c) (∀x ∈ A)(1 ∈ x → x).
(d) (∀x ∈ A)(1 ∈ x → 1).
(e) (∀B.C,D ⊆ A)(B ≪ C → D ⇐⇒ B ◦ C ≪ D).
(f) (∀x, y ∈ A)(x ◦ y ≪ x ∧ x ◦ y ≪ y).
(g) (∀B,C ⊆ A)(B ◦ C ≪ B ∧ B ◦ C ≪ C).
(h) (∀x, y ∈ A)(x ≪ y → x).
(i) (∀x, y ∈ A)(1 ∈ x → (y → x)).
(j) (∀B,C ⊆ A)(B ≪ C → B).
(k) (∀x, y ∈ A)(x ◦ (x → y) ≪ x ∧ x ◦ (x → y) ≪ y).
(l) (∀x, y, z ∈ A)(x → (y → z) ≼ (x ◦ y) → z ≼ x → (y → z) ≼ y → (x → z)).
(m) (∀x, y ∈ A)(x ≪ y → (x ◦ y)).

Proof. (a) If B ⊆ A is such that 1 ≪ B, then there exist an element b ∈ B such
that 1 ≼ b. Hence 1 ≡≼ b ∈ B by (H2).

(b) Assume that x ≼ y. From x ∈ x ◦ 1 and x ≼ y it follows that x ◦ 1 ≪ y.
Then 1 ≪ x → y by (H3). Thus, 1 ≼ x → y by (a).

(c) The statement (c) follows immediately from the statement (b) by taking
y = x and recognizing that ≼ is a re�exive relation.

(d) The statement (d) follows immediately from the statement (b) and (H2) by
taking y = 1.

(e) Suppose B ≪ C → D. This means that there are elements b ∈ B, c ∈ C,
d ∈ D such that b ≪ c → d. Then b ◦ c ≪ d by (H3). This means B ◦ C ≪ D.
Demonstration of the inverse inference is obviously acceptable.

(f) Since y ≼ 1 and x ≼ 1 by (H2), we have y ≼ 1 ∈ x → x and x ≼ 1 ∈ y → y
according to (c). This means that y ≪ x → x and x ≪ y → y are valid. From
here, we get that x ◦ y ≪ x and x ◦ y ≪ y hold according to (H3).

(g) This statement follows from the previous statement.
(h) For arbitrary elements x, y ∈ A, according to (f), x ◦ y ≪ x holds. From

here, x ≪ y → x follows by (H3).
(i) The statement (i) follows immediately from (h) with respect to (b).
(j) The statement (j) is a direct consequence of the statement (g) with respect

to formula (e).
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(k) The �rst part of statement (k) follows from the �rst part of statement (f),
if we put x → y instead of the variable y. From the validity of the formula
x → y ≪ x → y follows the validity of the formula x ◦ (x − y) ≪ y according to
(H3).

(l) Let x, y, z, u ∈ A be elements such that u ∈ x → (y → z). This means u ≪
x → (y → z). Then (u◦x) ≪ y → z by (H3) and, again (u◦x)◦y ≪ z according to
(H3). From here it follows u ◦ (x ◦ y) ≪ z due to the associativity of the operation
◦. Thus u ≪ (x ◦ y) → z by (H3). Thus means x → (y → z) ≼ (x ◦ y) → z. By a
similar way, we can prove that (x ◦ y) → z ≼ x → (y → z). From here

x → (y → z) ≼ y → (x → z)

follows due to the commutativity of the operation ◦.
(m) It is holds x◦y ≪ x◦y by re�exivity of the relation≪. Then x ≪ y → (x◦y)

by (H3). □

Theorem 2. In any hyper quasi-ordered residuated system (A, ◦, 1,→,≼), the
following holds:

(n) (∀x, y, z ∈ A)(x ≼ y =⇒ x ◦ z ≪ y ◦ z).
(p) (∀x, y, z ∈ A)(x ≼ y =⇒ (z → x ≼ z → y ∧ y → z ≼ x → z)).
(q) (∀x, y, z ∈ A)(x → y ≼ (y → z) → (x → z)).
(r) (∀x, y, z ∈ A)((x → y) ◦ (y → z) ≪ x → z).
(s) (∀x, y, z ∈ A)(y → z ≪ (x → y) → (x → z)).

Proof. (n) Let x, y, z ∈ A be such that x ≼ y. On the other hand, we have
y ≪ z → y ◦ z according to (m). Hence x ≪ z → y ◦ z. So x ◦ z ≪ y ◦ z by (H3).

(p) Let x, y, z, u ∈ A be such that x ≼ y.
Suppose that u ∈ z → x. From here we have u ≪ z → x. Then u ◦ z ≪ x.

Thus u ◦ z ≪ y. Hence u ≪ z → y. Finally, we have z → x ≼ z → y.
Let t ∈ y → z. Then t ≪ y → z. Thus y ◦ t = t ◦ y ≪ z by (H3). Hence

y ≪ t → z and x ≪ t → z with respect to x ≼ y. From here, it follows x ◦ t ≪ z
by (H3). Therefore, we have t ≪ x → z. Finally, y → z ≼ x → z.

(q) Let x, y, z, u ∈ A be such that u ∈ y → z. Then u ≪ y → z. Thus u◦ y ≪ z
and y ≪ u → z by (H3). So, there exists an element t ∈ u → z such that y ≼ t.
Now, x → y ≼ x → t by (p). Further on, we have

x → y ≼ x → t ⊆ x → (u → z) ≼ u → (x → z) ⊆ (y → z) → (x → z).

(r) Statement (r) is obtained directly from statement (q) by reference to state-
ment (e).

(s) Statement (s) is obtained directly from statement (r) by reference to state-
ment (e). □

3.2. Concept of �lters in hyper QRS. As usual, the concept of �lters in hyper
residuated lattices ([3], De�nition 3.1) and in hyper hoop-algebras ([4], De�nition
4.2) is determined as a multiplicative subsemihypergroup of those structures. In
this paper, we will not act in that way. In this subsection, we will consider the
following conditions imposed on the subset F of the hyper quasi-ordered residuated
system (A.◦, 1,→,≼):
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(HF0) 1 ∈ F .
(HF1) (∀x, y ∈ A)(x ◦ y ⊆ F =⇒ (x ∈ F ∧ y ∈ F )).
(HF2) (∀x, y ∈ A)((x ≼ y ∧ x ∈ F ) =⇒ y ∈ F ).
(HF3) (∀x, y ∈ A)((x ∈ F ∧ x → y ⊆ F ) =⇒ y ∈ F ).
(sHF3) (∀x, y ∈ A)((x ∈ F ∧ F ≪ x → y) =⇒ y ∈ F ).
(dHF3) (∀x, y ∈ A)(((x → y) ∩ F ̸= ∅ ∧ x ∈ F ) =⇒ y ∈ F ).
(SH) (∀x, y ∈ A)((x ∈ F ∧ y ∈ F ) =⇒ x ◦ y ⊆ F ).
(wSH) (∀x, y ∈ A)((x ∈ F ∧ y ∈ F ) =⇒ F ≪ x ◦ y).
In the next few lemmas, some of their mutual relations will be exposed.

Lemma 1. F ̸= ∅ ⊨ (HF2) =⇒ (HF0).

Proof. Let F be a non-empty subset of a hyper quasi-ordered residuated system
hA. Since F ̸= ∅, then there exists an element x ∈ F . According to (H2), x ≼ 1
holds. From here, we get 1 ∈ F by (HF2). □

Lemma 2. [H] ⊨ (HF2) =⇒ (HF1).

Proof. Let F be a subset of a hyper quasi-ordered residuated system hA. Assume
that F satis�es condition (HF2). Let x, y ∈ A be such that x◦y ⊆ F . This means
(∀u ∈ A)(u ∈ x ◦ y =⇒ u ∈ F ). On the other hand, by (f), we have x ◦ y ≪ x and
x ◦ y ≪ y. Therefore v ≼ x for some v ∈ x ◦ y and t ≼ y for some t ∈ x ◦ y. From
here it follows that x ∈ F and y ∈ F according to (HF2) considering that v ∈ F
and t ∈ F hold. □

The following lemma relates the conditions (sHF3) to (HF2):

Lemma 3. [H], (HF0) ⊨ (sHF3) =⇒ (HF2).

Proof. Let F be a nonempty subset of a hyper quasi-ordered residuated system
hA satisfy the condition (sHF3). Let x, y ∈ A be such that x ∈ F and x ≼ y.
Then, by (b), we have 1 ∈ x → y. Thus F ≪ x → y since 1 ∈ F and 1 ≼ 1. Now,
from (sHF3) it follows that y ∈ F . Thus, (HF2) holds. □

Lemma 4. [H], (HF0) ⊨ (dHF3) =⇒ (sHF3).

Proof. Let F be a non-empty subset of A satisfying the the conditions (HF0) and
(dHF3). Now, let x ∈ F and F ≪ (x → y). Then there exist z ∈ F and u ∈ x → y
such that z ≼ u. So, u ∈ F by (HF2). Hence F ∩ (x → y) ̸= ∅. Thus y ∈ F by
(dHF3). This means that F satis�es the condition (sHF3). □

Corollary 2.1. [H], (HF0) ⊨ (dHF3) =⇒ (HF2).

Proof. We have (dHF3) =⇒ (sHF3) by Lemma 4 and (sHF3) =⇒ (HF2)
according to Lemma 3. So, (dHF3) =⇒ (HF2). □

Lemma 5. [H], (HF0) ⊨ (sHF3) =⇒ (wSH).

Proof. Let F be a nonempty subset of a hyper quasi-ordered system hA that
satis�es the condition (sHF3). Then the condition (HF2) holds by Lemma 3. Let
x, y ∈ A be such that x ∈ F and y ∈ F . On the one hand, according to (m), we
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have y ≪ x → x ◦ y. This means that there exists an element u ∈ x → x ◦ y such
that y ≼ u. Since y ∈ F , it follows from this and y ≼ u that u ∈ F . On the other
hand, u ∈ x → x ◦ y means that there is some v ∈ x ◦ y such that u ∈ x → v. So,
for y ∈ F there exists u ∈ x → v such that y ≼ x → v, i.e. we have F ≪ x → v.
Now, from x ∈ F and F ≪ x → v follows v ∈ F according to (sHF3). Finally,
for u ∈ F there exists an element v ∈ x ◦ y such that u ≼ v. This means that
F ≪ x ◦ y holds. □

In addition to the previous one, we also have:

Lemma 6. [H] ⊨ (SH) =⇒ (wSH).

Proof. Let the subset F in a hyper residuated system hA satisfy the condition
(HS). This means that for each x, y ∈ F , x ◦ y ⊆ F holds. Hence (x ◦ y) ∩ F ̸= ∅,
for all x, y ∈ F . Therefore, there exists an element u ∈ F and u ∈ x ◦ x such that
u ≼ u. Thus, F satis�es the condition (wSH). □

Here it is important to point out that, in the general case, (HF3) =⇒ (HF2)
cannot be deduced.

Based on the hyper residuated lattices theory (for example, [2]), we introduce
the term deductive system in a hyper QRS.

De�nition 3.2. Subset D of a hyper quasi-ordered residuated system hA is a
deductive system in hA if it satis�es the conditions (HF0) and (HF3).

In context to the mentioned text, here we introduce the term 'strong' deductive
system.

De�nition 3.3. Subset D of a hyper quasi-ordered residuated system hA is a
strong deductive system in hA if it satis�es the conditions (HF0) and (sHF3).

In connection with the previous determination, it should be noted that the con-
dition (HF2) is already contained in the condition (sHF3), and with the mandatory
presence of the condition (HF0), according to Lemma 3.

De�nition 3.4. Subset D of a hyper quasi-ordered residuated system hA is a
re�exive subset of hA if it satis�es the following condition

(R) (∀B,C ⊆ A)((B → C) ∩D ̸= ∅ =⇒ (B → C) ⊆ D).

Example 3.7. Let A =: {a, b, c, 1} be a chain such that a < b < c < 1. Let us
de�ne the hyper operations as follows

→ 1 a b c

1 {1} {a} {b} {c}
a {1} {1} {1} {1}
b {1} {a,b} {1} {1}
c {1} {a} {a,b} {1}

and

◦ 1 a b c

1 {1} {a} {b} {c}
a {a} {a} {a} {a}
b {b} {a} {a,b} {b}
c {c} {a} {b} {c}

Routine calculations show that (A, ◦, 1,→,⩽) is a hyper (quasi-)ordered residuated
system. The subsets G =: {1} and F =: {c, 1} are re�exive deductive systems in
hA.
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The following proposition is immediately valid in accordance with the comment
at the end of subsection 2.3.

Proposition 3.1. Every strong deductive system in a hyper quasi-ordered residu-
ated system hA is a deductive system in hA i.e. the following conclusion is valid

[H] ⊨ (sHF3) =⇒ (HF3).

Example 3.8. Let hA be a hyper QRS as in Example 3.3. It is easy to show that
D = [ 12 , 1] is a deductive system in hA.

Example 3.9. Let hA be a hyper QRS as in Example 3.5. It can be veri�ed that
the set Dn = {1, x1, ..., xn} is a deductive system for any n ∈ N. However, the
set Dn is not a strong deductive system. Indeed, for example, for xn ∈ Dn and
Dn ≪ xn → xn+1 = Dn+1, we have xn+1 /∈ Dn.

It is obvious that the following lemma holds:

Lemma 7. [H] ⊨ (R) =⇒ (dHF3).

Proof. If we put B = {x} and C = {y} in (R), we get (dHF3). □
The following statement shows a conditional connection between the condition

(HF3) and the condition (HF2).

Lemma 8. [H], (HF0), (R) ⊨ (HF3) =⇒ (HF2).

Proof. Let D be a re�exive deductive system of a hyper quasi-ordered residuated
system hA. Let x, y ∈ A be such that x ≼ y and x ∈ D. Since 1 ∈ D by (HF0)
and 1 ∈ x → y according to (b), we have (x → y) ∩D ̸= ∅. From here it follows
x → y ⊆ D according to (R). Using this and x ∈ D it follows y ∈ D according to
(HF3). This proves that (HF2) is a valid formula. □
Proposition 3.2. Let D be a re�exive deductive subset of a hyper quasi-ordered
residuated system hA. Then

(∀B,C ⊆ A)(D ≪ B → C ⇐⇒ (B → C) ∩D ̸= ∅ ⇐⇒ (B → C) ⊆ D).

Proof. Let D be a re�exive deductive system in a hyper quasi-ordered residuated
system hA.

Since the implication (B → C) ⊆ D =⇒ (B → C) ∩ D ̸= ∅ is obvious, the
equivalence (B → C) ∩D ̸= ∅ ⇐⇒ (B → C) ⊆ D is valid in the presence of the
condition (R).

If D ≪ (B → C), then there exist b ∈ B, c ∈ C, d ∈ D and t ∈ b → c ⊆ B → C
such that d ≼ t. Thus t ∈ D by (HF2). This means t ∈ (b → c) ∩ D. Hence
(B → C) ∩D ̸= ∅. Conversely, suppose that (B → C) ∩D ̸= ∅. Then there exist
b ∈ B and c ∈ C such that (b → c)∩D ̸= ∅. So there exists some t ∈ (b → c)∩D.
Thus, for some t ∈ D there exists some t ∈ b → c ⊆ B → C such that t ≼ t.
Therefore D ≪ B → C. □

The concept of �lters in a hyper residuated lattice was introduced in [17] and
discussed in more detail in [3] as follows: A nonempty subset F of a hyper resud-
uated lattice L satisfying (HF2) and (SH) is a �lter of L. A nonempty subset F of
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a hyper resuduated lattice L satisfying (HF2) and (wSH) is a weak �lter of L. In
[3] it was shown (Theorem 3.4) that: A non-empty subset F of a hyper residuated
lattice L is a weak �lter if and only if it satis�es the condition (HF2) and

(wHF4) (∀x, y ∈ A)((x ∈ F ∧ y ∈ F ) =⇒ (x ◦ y) ∩ F ̸= ∅).
The concept of �lters in a hyper hoop-algebra can be found in [4] and is de-

termined in the following way: A nonempty subset F of a hyper hoop-algebra H
satisfying (HF2) and (wHF4) is a weak �lter of H. A nonempty subset F of a
hyper hoop-algebra H satisfying (HF2) and (SH) is a �lter of H. In addition, it
was shown there: A non-empty subset F of a hyper hoop-algebra H is a weak
�lter of H if and only if it satis�es conditions (HF2) and (wSH).

Let us show an obvious connection between conditions (SH) and (wHF4).

Lemma 9. [H], ⊨ (SH) =⇒ (wHF4).

The reverse implication of the implication in Lemma 9 need not be valid in the
general case. Apart from the above, the following implication is also valid:

Lemma 10. [H], (HF2) ⊨ (wSH) =⇒ (wHF4).

Proof. Let a subset F of a hyper QRS hA satisfy the conditions (HF2) and (wSH).
Let us prove (wHF4). Let x, y ∈ A be such that F ≪ x ◦ y. This means that
there is some u ∈ F and there is some v ∈ x ◦ y such that u ≼ v. From u ∈ F and
u ≼ v it follows v ∈ F according to (HF2). Therefore, v ∈ F ∩ (x ◦ y) holds. So,
F ∩ (x ◦ y) ̸= ∅. This means that the formula (wHF4) is valid. □
Theorem 3. Let hA be a hyper quasi-ordered residuated system and D ⊆ A.
Then

[H], D ̸= ∅, (HF2) ⊩ (sHF3) ⇐⇒ (dHF3).

Proof. (=⇒) Let D ⊆ A be a strong deductive system in a QRS hA that also
satis�es the condition (HF2). This means that the subsetD satis�es the conditions
(HF0), (HF2) and (sHF3). Let us prove that it satis�es the condition (dHF3) as
well. Let x, y ∈ A be such that x ∈ D and D ∩ (x → y) ̸= ∅. Then there exists an
element d ∈ A such that d ∈ D and d ∈ x → y. Since d ≼ d is valid, we conclude
that D ≪ x → y is also valid. From here we get that y ∈ D according to (sHF3).
This proves the validity of the formula (dHF3).

(⇐=) It follows from Lemma 4 □
In accordance with our earlier orientations - the omission which requires that

a �lter in a semigroup A be a subsemigroup of the semigroup A (see, for example
[11]), we will determine the concept of �lters in a hyper QRS as follows:

De�nition 3.5. A subset F of a hyper quasi-ordered residuated system hA is a
�lter of hA if it satis�es the conditions (HF2) and (HF3).

It is not di�cult to conclude that ∅ and A are �lters in a hyper quasi-ordered
reduced system hA, since the empty set ∅ and set A satisfy the conditions (HF2)
and (HF3).

Besides that, it can be concluded:
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Proposition 3.3. Any non-empty �lter in a hyper quasi-ordered residuated system
hA is a deductive system in hA.

Proof. The proof follows directly from Lemma 1. □

De�nition 3.6. A subset F of a hyper quasi-ordered residuated system hA is a
strong �lter of hA if it satis�es the conditions (HF2) and (sHF3).

According to Lemma 3, a nonempty strong deductive system in a hyper quasi-
ordered residuated system hA is a strong �lter in hA. The reverse is also true (to
see Proposition 3.5). It is immediately clear that the following proposition is valid:

Proposition 3.4. Every non-empty strong �lter in a hyper quasi-ordered residu-
ated system hA is a �lter in hA.

Proof. According to Proposition 3.3. □

Proposition 3.5. Any non-empty strong �lter in a hyper quasi-ordered residuated
system hA is a strong deductive system in hA.

Proof. The proof follows directly from Lemma 1. □

Theorem 4. Let hA be a hyper quasi-ordered residuated system and F ⊆ A be a
subset which additionally satis�es the condition (HF2). Then F is a strong �lter
in hA if and only if it satis�es the condition (dHF3).

Proof. The proof is obtained from Theorem 1. □

Example 3.10. Let A as in Example 3.3. Then the set Fz = [z, 1] is a �lter in
hA for any z ⩽ 1. Indeed. Let x, y ∈ A be such that x ∈ [z, 1] and x → y ⊆ [z, 1]
hold. If x ⩽ y, then x → y = {1}, so y ∈ [z, 1] holds. If y < x, then x → y = [y, 1],
so from [y, 1] ⊆ [z, 1] we again conclude that y ∈ [z, 1] holds. However, [z, 1] is
not a strong �lter in hA, because for example, for y < z < x we have x ∈ [z, 1],
[y, 1] ∩ [z, 1] ̸= ∅ and y /∈ [z, 1].

Example 3.11. Let hA be as in Example 3.4. The subset F =: [a, 1] , for a ⩽ 1
is a strong �lter in hA. Indeed:

(HF3): For x ∈ F and x ⩽ y the following holds x → y = {1, x, y}, so from
{1, x, y} ⊆ F it follows y ∈ F . For x ∈ F and y < x the following holds
x → y = {y}, so from {y} ⊆ F it follows y ∈ F again.

(dHF3): For x ∈ F and x ⩽ y the following holds x → y = {1, x, y}, so from
{1, x, y} ∩ F ̸= ∅ it follows y ∈ F . For x ∈ F and y < x the following holds
x → y = {y}, so from {y} ∩ F ̸= ∅ it follows y ∈ F again.

The following theorem shows another conditional connection between the con-
dition (HF3) and the condition (HF2) (in relation to the previous one, see Lemma
8).

Theorem 5. Let hA be a hyper quasi-ordered residuated system and F ⊆ A.
Then

[H] ⊨ (HF2) ∧ (SH) =⇒ (HF3).
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Proof. Let the subset F ⊆ A satisfy the conditions (HF2) and (SH). Let us prove
the validity of (HF3). Let's take the elements x, y ∈ A such that x ∈ F and
x → y ⊆ F hold. According to (k), we have x ◦ (x → y) ≪ y. On the other
hand, we have x ◦ (x → y) ⊆ F by (SH). This means that there exists an element
u ∈ x ◦ (x → y) such that u ∈ F and u ≼ y. Thus y ∈ F by (HF2). This proves
the validity of (HF3). □

The previous theorem shows that the �lter in the sense of the articles [3, 4] is
the same as the �lter in our sense.

Theorem 6. Let hA be a hyper quasi-ordered residuated system and F ⊆ A.
Then

[H], (HF0) ⊩ (sHF3) ⇐⇒ (SH) ∧ (HF2).

Proof. (=⇒) Let a subset F of a hyper QRS hA satisfy the conditions (HF0) and
(sHF3). This set also satis�es condition (HF2) the according to Lemma 3. Let us
prove that F satis�es the condition (SH). Let x, y, u ∈ A be such that x, y ∈ F
and u ∈ x ◦ y. Then x ◦ y ≪ u since u ≼ u holds. Thus y ≪ x → u by (H3).
This means F ≪ x → u. Hence, due to x ∈ F and F ≪ x → u it follows u ∈ F
according to (sHF3). Therefore, x ◦ y ⊆ F .

(⇐=) Assume that the nonempty subset F of a hyper QRS hA satis�es the
conditions (SH) and (HF2). Immediately, according to Lemma 1, we conclude
that F satis�es condition (HF0). Let us prove that (sHF3) holds. Let x, y ∈ A be
such that x ∈ F and F ≪ x → y. This means that there exist elements u ∈ F and
v ∈ x → y such that u ≼ v. From here it follows that v ∈ F by (HF2). Besides,
x ◦ v ⊆ F also holds due to (SH). By v ∈ x → y we have v ≪ x → y. Thus
v ◦ x ≪ y by (H3). So, there exists an element t ∈ v ◦ x such that t ≼ y. Finally,
we have y ∈ F by (HF2). This proves that F satis�es the condition (sHF3). □

From the previous theorem it immediately follows:

Corollary 6.1. In order for a non-empty subset F in a hyper quasi-ordered resid-
uated system hA to be a �lter in hA, it is su�cient to satisfy the conditions (HF0)
and (sHF3).

Proof. Assume that a nonempty subset F in the hyper QRS hA satis�es the con-
ditions (HF0) and (sHF3). This set satis�es both conditions (SH) and (HF2)
according to the previous theorem. In addition, this set also satis�es condition
(HF3) according to Theorem 2. Therefore, F is a �lter in hA. □

In what follows, we will deal with minimal and maximal (strong) �lters in one
hyper quasi-ordered residuated system.

Let F be a proper �lter of a hyper quasi-ordered residuated system hA. Then
F is said to be a minimal �lter in hA if G ⊆ F , implies F = G or G = ∅, for all
�lters G of hA.

Theorem 7. Let {Fi : i ∈ I} be a family of non-empty �lters in a hyper quasi-
ordered residuated system hA which contain the subset D ⊆ A. Then

∩
i∈I Fi is

a �lter of hA which contains the subset D ⊆ A.
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Proof. It is obvious that D ⊆
∩

i∈I Fi holds.
Let x, y ∈ A be such x ∈

∩
i∈I Fi and x ≼ y. Then x ∈ Fi for every i ∈ I. Thus

(∀i ∈ I)(y ∈ Fi) by (HF2). Hence y ∈
∩

i∈I Fi.
Let x, y ∈ A be such that x ∈

∩
i∈I Fi and x → y ⊆

∩
i∈I Fi. Then x ∈

Fi ∧ x → y ⊆ Fi or every i ∈ I. Thus y ∈ Fi for every i ∈ I by (HF3). Hence
y ∈

∩
i∈I Fi. □

Corollary 7.1. Let D be a subset of a hyper quasi-ordered residuated system hA.
Then there exists the minimal �lter in hA which contains the subset D.

Proof. Let X be the family of all �lters in a hyper quasi-ordered residuated system
hA that contain the subset of D. Then ∩X is a minimal �lter in hA that contains
D according to the previous theorem. Indeed. If G ( ̸= ∅) is a �lter in hA containing
D, then G ∈ X. Therefore, G ⊇ ∩X. □

Corollary 7.2. For each element x in a hyper quasi-ordered residuated system
hA there is a minimal �lter in hA that contains x.

Proof. The proof is obtained from the previous Corollary if we take D = {x}. □

Example 3.12. In the hyper quasi-ordered residuated system in Example 3.6, the
sets {c, 1} and {1} are �lters. The set G =: {b, c, 1} is not a �lter because, for
example, b → a = {b, c, 1} ⊆ G and b ∈ G are valid for the elements a, b ∈ A but
a /∈ G.

Example 3.13. Let A =: {a, b, c, 1} be a chain such that

≼=: {(a, a), (a, b), (a, 1), (b, b), (b, 1), (c, c), (c, 1)}.

Let us de�ne the hyper operations as follows

◦ a b c 1

a {a} {a} {a,b,c} {a}
b {a} {a,b} {b,c} {a,b}
c {a,b,c} {b,c} {c} {c}
1 {a} {a,b} {c} {1}

and

→ a b c 1

a {1} {1} {c} {1}
b {a.b,c} {1} {c} {1}
c {a,b} {a,b} {1} {1}
1 {a} {a,b} {c} {1}

Routine calculations show that (A, ◦, 1,→,≼) is a hyper (quasi-)ordered residuated
system. The subsets F1 =: {1}, F2 =: {c, 1}, F3 =: {b, 1} and F4 =: {a, b, 1} are
strong �lters in hA.

Let F be a proper �lter (strong �lter, deductive system, strong deductive sys-
tem) of a hyper quasi-ordered residuated system hA. Then F is said to be a
maximal �lter (strong �lter, deductive system, strong deductive system) in hA if
F ⊆ G ⊆ A, implies F = F or G = A, for all �lters (strong �lter, deductive
system, strong deductive system, respectively) G in hA.

Theorem 8. In a hyper quasi-ordered residuated system hA every proper �lter
(strong �lter, deductive system, strong deductive system) in hA is contained in a
maximal �lter (strong �lter, deductive system, strong deductive system) in hA.
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Proof. Let F be a proper �lter (strong �lter, deductive system, strong deductive
system) in hA and let Y be the family of all proper �lters (strong �lter, deductive
system, strong deductive system) in hA containing F . Then F ∈ Y and (Y,⊆) is
a poset partially ordered by the inclusion. Let {Fi : i ∈ I} be a chain in Y . Let
us prove that

∪
i∈I Fi is a �lter (strong �lter, deductive system, strong deductive

system, res.) in hA that contains F .
Clearly, 1 ∈

∪
i∈I Fi.

Let x, y ∈ A be such that x ∈
∪

i∈I Fi and x ≼ y. Then there exists an index
k ∈ I such that x ∈ Fk. Thus y ∈ Fk ⊆

∪
i∈I Fi.

Assume that all sets Fi (i ∈ I) satisfy the condition (sHF3). Let x, y ∈ A be
such that x ∈

∪
i∈I Fi and

∪
i∈I Fi ≪ x → y. Then, there exist j, k ∈ I such that

x ∈ Fj and Fk ≪ x → y. Since Fi's forms a chain, we can assume that Fj ⊆ Fk.
Thus, Fk ≪ x → y and x ∈ Fk implies that y ∈ Fk ⊆

∪
i∈I Fi by (sHF3). This

proves that
∪

i∈I Fi satis�es the condition (sHF3) and that it contains the set F .
Assume that all sets Fi (i ∈ I) satisfy the condition (HF3). Let x, y ∈ A be

such that x ∈
∪

i∈I Fi and x → y ⊆
∪

i∈I Fi. Then, there exist j ∈ I and J ⊆ I
such that x ∈ Fj and x → y ⊆

∪
t∈J Ft. Since Fi's forms a chain, so we can

assume that Fj ⊆ Fk for some k ∈ {j} ∪ J and x → y ⊆ Fk. Thus, x → y ⊆ Fk

and x ∈ Fk imply that y ∈ Fk ⊆
∪

i∈I Fi by (HF3).
So,

∪
i∈I Fi ∈ Y . Hence any chain of elements of Y has an upper bound in Y .

By Zorn's lemma, Y has a maximal element, let's say M . Let us show that M
is a maximal �lter (strong �lter, deductive system, strong deductive system, res.)
in hA containing F . Let M ⊆ G ⊆ A, for some �lter (strong �lter, deductive
system, strong deductive system, res.) G in hA. If G ̸= A, then G ∈ Y . Since
M is a maximal element of Y , we get M = G. Therefore, M is a maximal
�lter (strong �lter, deductive system, strong deductive system, res.) in hA which
contains F . □

4. Conclusions and future works

In this article, the concept of hyper quasi-ordered residuated system is devel-
oped, which is a generalization of the concept of quasi-ordered residuated system,
on the one hand, and, on the other hand, it is a generalization of both hyper
hoop-algebras and hyper redisuated lattices. The category of hyper quasi-ordered
residuated systems, quotient structure, special �lters as inductive and conjugative
�lters, and so on (like for example, the concept of ideals in this structure) could
be topics for future research. Finally, but not least, one could and should consider
the similarities and di�erences between the algebraic structures mentioned here.
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