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QUASI-VALUATION MAPS ON

QUASI-ORDERED RESIDUATED SYSTEMS

DANIEL ABRAHAM ROMANO

Abstract. The concept of quasi-ordered residuated systems was introduced in
2018 by S. Bonzio and I. Chajda. The substructures of ideals and filters in such
algebraic structures were considered by the author. This paper introduces and
analyzes the concept of quasi-valuation maps on quasi-ordered residuated sys-
tems based on a filter in it.

1. INTRODUCTION

The idea that universal algebra can be analyzed by means of real functions
(recognizable as ’pseudo-valuation mapings’) was first developed by D. Busneag
in 1996 ([3]). That author has expanded the perception of pseudo-valuation on
Hilbert’s algebras ([4]) previously constructed for the commutative rings. Song,
Roh and Jun, in [19] introduced the notion of quasi-valuation maps based on a
subalgebra and an ideal in BCK/BCI-algebras, and then they investigated several
properties of them. Quasi-valuation maps on KU-algebras and UP-algebras, as a
generalization of KU-algebras, were studied in [7, 9, 11, 13]. The application of
this idea to hoop-algebras was developed by M.A. Kologani at al. in 2021 ([8]).

The concept of residuated relational systems ordered under a quasi-order re-
lation, or quasi-ordered residuated systems (briefly, QRS), was introduced in
2018 by S. Bonzio and I. Chajda ([1]). Quasi-ordered residauted system, gener-
ally speaking, differs from the commutative residuated lattice ⟨A, ·, 0, 1,⊓,⊔, R⟩
where R is a lattice quasi-order. First, our observed system does not have to be
limited from below. Second, the observed system does not have to be a lattice.
Also, this algebraic system differs from hoop-algebras (for example, see [2]). The
substructures of filters and ideals in quasi-ordered residuated systems were con-
sidered in articles [12, 14, 15]. This algebraic structure has been the focus of this
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author’s interest in several of his researches (see, for example [16, 17]). Some
more information about this algebraic structure a reader can find in [18].

In this paper, the notion of quasi-valuation map on quasi-ordered residuated
systems and its related properties are investigated. This function on a QRS, con-
structed in this paper, allows us to design a simple algorithm to recognize sub-
structures of filters and ideals in it. This paper presents some of the specificities
of this class of algebraic structures.

2. PRELIMINARIES

In this section, the necessary notions and notations and some of their interrela-
tionships are listed in order to enable a reader to comfortably follow the presen-
tation in this report. It should be pointed out here that the notations for logical
conjunction and logical implication have a literal meaning.

2.1. Concept of quasi-ordered residuated systems. In article [1], S. Bonzio and
I. Chajda introduced and analyzed the concept of residual relational systems.

Definition 2.1 ([1], Definition 2.1). A residuated relational system is a structure A =
⟨A, ·,→, 1, R⟩, where ⟨A, ·,→, 1⟩ is an algebra of type ⟨2, 2, 0⟩ and R is a binary
relation on A and satisfying the following properties:

(1) (A, ·, 1) is a commutative monoid;
(2) (∀x ∈ A)((x, 1) ∈ R);
(3) (∀x, y, z ∈ A)((x · y, z) ∈ R ⇐⇒ (x, y → z) ∈ R).

We will refer to the operation · as multiplication, to → as its residuum and to
condition (3) as residuation.

Recall that a quasi-order relation ’≼ ’ on a set A is a binary relation which is
reflexive and transitive.

Definition 2.2 ([1]). A quasi-ordered residuated system is a residuated relational sys-
tem A = ⟨A, ·,→, 1,≼⟩, where ≼ is a quasi-order relation in the monoid (A, ·)

The following proposition shows the basic properties of quasi-ordered residu-
ated systems.

Proposition 2.1 ([1], Proposition 3.1). Let A be a quasi-ordered residuated system.
Then

(4) The operation ’·’ preserves the pre-order in both positions;

(∀x, y, z ∈ A)(x ≼ y =⇒ (x · z ≼ y · z ∧ z · x ≼ z · y));

(5) (∀x, y, z ∈ A)(x ≼ y =⇒ (y → z ≼ x → z ∧ z → x ≼ z → y));
(6) (∀y, z ∈ A)(x · (y → z) ≼ y → x · z);
(7) (∀x, y, z ∈ A)(x · y → z ≼ x → (y → z));
(8) (∀x, y, z ∈ A)(x → (y → z) ≼ x · y → z);
(9) (∀x, y, z ∈ A)(x → (y → z) ≼ y → (x → z));
(10) (∀x, yz ∈ A)((x → y) · (y → z) ≼ x → z);
(11) (∀x, y ∈ A)((x · y ≼ x) ∧ (x · y ≼ y));
(12) (∀x, y, z ∈ A)(x → y ≼ (y → z) → (x → z));
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(13) (∀x, y, z ∈ A)(y → z ≼ (x → y) → (x → z)).

It is generally known that a quasi-order relation ≼ on a set A generates an
equivalence relation ≡≼:=≼ ∩ ≼−1 on A. Due to properties (4) and (5), this
equality relation is compatible with the operations in A. Thus, ≡≼ is a congruence
on A.

In the light of the previous note, it is easy to see that the following applies:
(7) and (8) give:
(H3) (∀x, y, z ∈ A)(x · y → z ≡≼ x → (y → z)).
Due to the universality of formula (9), we have:

(∀x, y, z ∈ A)(x → (y → z) ≡≼ y → (x → z)).

Example 2.1: By a hoop ([2]) we mean an algebra (H, ·,→, 1) in which (H, ·, 1) is a
commutative semigroup with the identity and the following assertions are valid:

(H1) (∀x ∈ H)(x → x = 1),
(H2) (∀x, y ∈ H)(x · (x → y) = y · (y → x)) and
(H3) (∀x, y, z ∈ A)(x · y → z = x → (y → z)).

In this algebra, order is determined as follows:

(∀x, y ∈ A)(x ⩽ y ⇐⇒ x → y = 1).

It is easy to see that (H,⩽) is a poset. It is easy to see that every hoop is a
(quasi-)ordered residuated system and vice versa does not have to be. □

Since, in the general case, the formula

(∀x, y ∈ A)(x · (x → y) ≡≼ y · (y → x))

does not have to be valid in a quasi-ordered residuated system, we conclude that
this last mentioned system is a generalization of the hoop-algebra.
Example 2.2: For a commutative monoid A, let P(A) denote the power set of A
ordered by set inclusion and ’·’ the usual multiplication of subsets of A. Then
⟨P(A), ·,→, A,⊆⟩ is a quasi-ordered residuated system in which the residuum is
given by

(∀X, Y ∈ P(A))(Y → X := {z ∈ A : Yz ⊆ X}).
□

Example 2.3: Let A = {1, 2, 3, 4} and operations ’·’ and ’→’ defined on A as fol-
lows:

· 1 a b c d
1 1 a b c d
a a a a a a
b b a b b b
c c a b c b
d d a b b d

and

→ 1 a b c d
1 1 a b c d
a 1 1 1 1 1
b 1 a 1 1 1
c 1 a d 1 d
d 1 a c c 1

Then A = ⟨A, ·,→, 1⟩ is a quasi-ordered residuated systems where the relation
’≼’ is defined as follows ≼:= {(1, 1), (a, 1), (a, b), (a, c), (a, d), (b, b), (b.c), (b, d), (b, 1),
(c, c), (c, 1), (d, d), (d, 1)}. □
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2.2. Concept of filters.

Definition 2.3 ([12], Definition 3.1). For a subset F of a quasi-ordered residuated
system A we say that it is a filter of A if it satisfies conditions

(F2) (∀u, v ∈ A)((u ∈ F ∧ u ≼ v) =⇒ v ∈ F), and
(F3) (∀u, v ∈ A)((u ∈ F ∧ u → v ∈ F) =⇒ v ∈ F).

Let it note that the empty subset of A satisfies the conditions (F2) and (F3).
Therefore, ∅ is a filter in A. It is shown ([12], Proposition 3.4 and Proposition 3.2),
that if a non-empty subset F of a quasi-ordered system A satisfies the condition
(F2), then it also satisfies the following conditions

(F0) 1 ∈ F and
(F1) (∀u, v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F)).

Also, it can be seen without difficulty that (F3) =⇒ (F2) is valid. Indeed, if (F3)
holds, then the formula u ∈ F ∧ u ≼ v, can be transformed into the formula
u ∈ F ∧ u → v ≡≼ 1 ∈ F by (F0) so from here, according to (F3) it can be
demonstrate the validity of implications (F2). However, the reverse does not have
to be valid.

If F(A) is the family of all filters in a QRS A, then F(A) is a complete lattice
([12], Theorem 3.1).

Remark 2.1: In implicative algebras, the term ’implicative filter’ is used instead
of the term ’filter’ we use (see, for example [5, 10]) because in the structure we
study the concept of filter is determined more complexly than requirement (F3).
It is obvious that our filter concept is also a filter in the sense of [5, 6, 10]. The
term ’special implicative filter’ is also used in the aforementioned sources if the
implicative filter in the sense of [10] satisfies some additional condition.
Example 2.4: Let A be a quasu-ordered residuated system as in Example 2.3.
Then F1 := {1}, F2 := {c, 1}, F3 := {1, d} and F4 := {1, c, d} and F5 := {1, b, c, d} are
filters of A. □

2.3. Concept of ideals. In the article [14], the concepts of pre-ideal and ideal
in quasi-ordered residuated systems were analyzed. Before that, the conditions
were analyzed

(J1) (∀y, v ∈ A)((u ∈ J ∨ v ∈ J) =⇒ u · v ∈ J),
(J2) (∀u, v ∈ A)((u ≼ v ∧ v ∈ J) =⇒ u ∈ J), and
(J3) (∀u, v ∈ A)((u → v /∈ J ∧ v ∈ J) =⇒ u ∈ J).

Furthermore, in that paper it was proved that (J2) =⇒ (J1) holds and that (J3) =⇒
(J2) also holds for the proper subset J. With respect to the above, we have:

Definition 2.4. Let A be a quasi-ordered residuated system. For a subset J of the
set A we say that it is a pre-ideal in A if the condition (J2) is valid. For a subset J
of the set A we say that it is an ideal in A if J = A or the condition (J3) is valid.

It can be easily seen that if J is a proper (pre-)ideal of A, then holds
(J0) 1 /∈ J.
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3. QUASI-VALUATION ON QRS

The following definition gives the concept of quasi-valuation maps on a quasi-
ordered residuated system.

Definition 3.1. Let A =: ⟨A, ·,→, 1⟩ a quasi-ordered residuated system. A real
valued function v : A/≡≼−→ R is called quasi-valuation on A if

(V0) v(1) = 0 and
(V1) (∀x, y ∈ A)(v(y) ⩾ v(x) + v(x → y)).

In the following proposition, some of the fundamental properties of the map-
ping v : A/≡≼−→ R designed in this way are given .

Proposition 3.1. For any quasi-valuation map v on a quasi-ordered residuated system
A, we have the following assertions:

(14) (∀x, y ∈ A)(x ≼ y =⇒ v(x) ⩽ v(y)).
(15) (∀x ∈ A)(v(x) ⩽ 0).
(16) (∀x, y ∈ A)(2v(x · y) ⩽ v(x) + v(y)).
(17) (∀x, y ∈ A)(v(x → y) ⩽ v(y) − v(x)).

Proof. Let x, y ∈ A be such that x ≼ y. Then x → y ≡≼ 1. Thus

v(y) ⩾ v(x) + v(x → y) = v(x) + v(1) = v(x) + 0 = v(x).

The statement (15) is a direct consequence of the statement (14) and the axiom
(2) with respect to the condition (V0).

Let x, y ∈ A be arbitrary elements. Then x · y ≼ x and x · y ≼ y by (11).
Thus v(x · y) ⩽ v(x) and v(x · y) ⩽ v(y) by (14). From here, we get the required
inequality.

Then condition (17) is equivalent to the condition (V1). □

In what follows, we will need the following lemma:

Lemma 1. Let A be a quasi-ordered residuated system. Then:
(18) (∀x ∈ A)(1 ≡≼ x → (x → 1)),
(19) (∀y ∈ A)(1 ≡≼ y → y).

Proof. Let x ∈ A be an arbitrary element. Than x · x ≼ x ≼ 1 by (11) and (2). Thus
x ≼ x → 1 by (3). Hence 1 ≼ x → (x → 1) ≼ 1 by (3) and (2). This proves (18).

The claim (19) is a direct consequence of the reflexivity of the relation ≼ and
axioms (2) and (3). □

On the other hand, we have

Proposition 3.2. For any quasi-valuation map v on a quasi-ordered residuated system
A, we have the following assertions:

(20) (∀x, y ∈ A)(v(x → y) ⩾ v(x) + v(y)).
(21) (∀x, y ∈ A)(v(x · y) ⩾ v(x) + v(y)).

Proof. Let x, y ∈ A be arbitrary elements. Then:
0 = v(1) by (V0)

= v(x → (x → 1)) by (18)
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= v(x → (x → (y → y))) by (19)
= v(x → (y → (x → y))) by (9)
⩽ v(y → (x → y)) − v(x) by (17)
⩽ v(x → y) − v(y) − v(x) by (17).

This proves the claim (20).
v(x · y) ⩾ v(y → x · y) + v(y) by (V1)

⩾ v(x → (y → x · y)) + v(x) + v(y) by (V1)
= v(x · y → x · y) + v(x) + v(y) by (H3)
= v(1) + v(x) + v(y) by (19)
= 0 + v(x) + v(y) by (V0).

This proves the claim (21). □

The following two theorems connect a quasi-valuation v : A/≡≼−→ R on a
quasi-ordered residuated system A and the concept of filters in A.

Theorem 1. If v : A/≡≼−→ R is a quasi-valuation map on a quasi-ordered redisu-
ated system A, then the set

Fv := {x ∈ A : v(x) = 0}
is a filter of A.

Proof. The set Fv is not empty because 1 ∈ Fv. Therefore, it is sufficient to prove
the validity of the condition (F3).

Let x, y ∈ A be such that x ∈ Fv and x → y ∈ Fv. Then v(x) = 0 and v(x → y) =
0. Thus v(y) ⩾ v(x) + v(x → y) = 0 + 0 = 0. Hence v(y) = 0 by (13). So, y ∈ Fv. This
proves the validity of the condition (F3). □

Theorem 2. Let G be a non-empty filter in a quasi-ordered residuated system A =
⟨A, ·, 1,→⟩. For any negative real number k, let vG be a real valued function on A/≡≼
defined by vG(x) := 0 if x ∈ G and vG(x) := k if x ∈ A \ G. Then vG is a quasi-valuation
on A and FvG = G holds.

Proof. It is clear that vG(1) = 0.
Let x, y ∈ A be arbitrary elements.
Assume that y ∈ G. Then

vG(y) = 0 ⩾ vG(x) + vG(x → y)

with respect (13).
Assume that y /∈ G. The contraposition applied to (F3) gives x /∈ G or x − y /∈

G. If x ∈ G and x → y /∈ G, then vG(x) = 0 and vG(x → y) = k. Hence

vG(y) = k = 0 + k = vG(x) + vG(x → y).

If x /∈ G and x → y ∈ G, then vG(x) = k and vG(x → y) = 0. Hence

vG(y) = k = k + 0 = vG(x) = vG(x → u).

If x /∈ G and x → y /∈ G, then vG(x) = k and vG(x → y) = k. Hence

vG(y) = k ⩾ k + k = vG(x) + vG(x → y).



QUASI-VALUATION MAPS ON QRS 21

Therefore vG is a quasi-valuation of A.
On the other hand, we have FvG = {x ∈ A : vG(x) = 0} = G. □

Example 3.1: Let A be a quasi-ordered residuated system as in Example 2.3. Then
the set F2 = {1, c} is a filter of A. If v : A/≡≼−→ R is defined by v(1) = v(c) = 0
and v(a) = v(b) = v(d) = −7, then v is a quasi-valuation on A according to the
Theorem 2. □

Theorem 3. If v : A/≡≼−→ R is a quasi-valuation map on a quasi-ordered redisu-
ated system A, then the set

Jv := {x ∈ A : v(x) < 0}
is an ideal of A.

Proof. Let x, y ∈ A be arbitrary elements of A such that x ≼ y and y ∈ Jv. Then
v(y) < 0. Due to the monotonicity of the function v, we have v(x) ⩽ v(y) < 0.
Thus, x ∈ Jv. This proves the validity of condition (J2).

To prove the validity of condition (J3), let us take x, y ∈ A such that x − y /∈ J
and y ∈ Jv. This means v(x → y) = 0 and v(y) < 0. On the other hand, according
to (17) we have 0 = v(x → y) ⩽ v(y) − v(x). Thus v(x) ⩽ v(y) < 0. Hence
x ∈ Jv. □

Example 3.2: Let A = H as in article [8], Example 3.3 and let v : A/≡≼−→ R is
determined as in Example 3.9 in the same paper. Then v is a quasi-valuation map
on A. Then Fv = {1} is a filter in A because v(1) = 0 and Jv = {0, a, b}. □

In what follows, we will design a pseudo-metric space on a quasi-ordered
residuated system generated by a pseudo-valuation on it.

By a pseudo-metric on a quasi-ordered residuated system A, we mean a real-
valued function

d : A/≡≼ ×A/≡≼−→ R

satisfying the following properties:
d(x, y) ⩾ 0, d(x, x) = 0,
d(x, y) = d(y, x) and
d(x, z) ⩽ d(x, y) + d(y, z)

for every x, y, z ∈ A.
Let us, first, prove a technical lemma.

Lemma 2. Let v be a quasi-valuation on a quasi-ordered residuated system A. Then the
following holds

(22) (∀x, y, z ∈ A)(v(x → z) ⩾ v(x → y) + v(y → z)).

Proof. Let x, y, z ∈ A be arbitrary elements. Then

x → z ≽ (x → y) · (y → x).

by (10). Thus v(x → z) ⩾ v((x → y) · (y → x)) by (14). Hence

v(x → z) ⩾ v(x → y) + v(y → x)

by (21). □
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Theorem 4. Let v : A/≡≼−→ R be a quasi-valuation on a quasi-ordered residuated
system A. Then

dv : A/≡≼ ×A/≡≼∋ (x, y) 7 −→ dv(x, y) := −(v(x → y) + v(y → x)) ∈ R

is a pseudo-metric on A and so (A, dv) is a pseudo-metric space.

Proof. Let v be a quasi-valuation on a quasi-ordered residuated system A.
Then v(x) ⩽ 0 for all x ∈ A by (15). Thus dv(x, y) ⩾ 0 for all x, y ∈ A.
It is clear that dv(x, x) = 0 and dv(x, y) = dv(y, x) for all x, y ∈ A.
Let x, y, z ∈ A be arbitrary elements. Then:
dv(x, z) = −(v(x → z) + v(z → x))

⩽ −(v(x → y) + v(y → z)) − (v(z → y) + v(y → x))
= −(v(x → y) + v(y → x)) − (v(y → z) + v(z → y))
= dv(x, y) + dv(y, z).

Hence (A/≡≼, dv) is a pseudo-metric space. □

4. CONCLUSION

In this paper, the notion of quasi-valuation map on a quasi-ordered residual
system based on filter in it is introduced. Using the notion of quasi-valuations,
a corresponding pseudo-metric space was designed. Judging by the results pre-
sented in the articles [2, 7, 8, 9, 11, 19], the idea of constructing the concept of
quasi-valuation on an algebraic structure and its connection with the correspond-
ing pseudo-metric space is independent of the specifics of the algebraic support
by which this design is realized. On the other hand, the specificities in each case
arise from the logical environment in which the concept of quasi-valuation map
is developed.

A natural continuation of this report could be the consideration of determina-
tions of quasi-valuation maps w on a quasi-ordered residuated system A based on
an implicative filter (weak implicative filter, comparative filter and so on...) in it.
In that case it is to be expected that the set Fw = {x ∈ A : w(x) = 0} will be an im-
plicative filter (weak implicative filter, comparative filter and so on, respectively)
in A.
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