$G_{s_{\alpha}}$ -OPEN SETS IN GRILL TOPOLOGICAL SPACES

DHANABAL SARAVANAKUMAR 1, NAGARAJAN KALAIVANI 2, AND MOHAMED ROWTHER MOHAMED RIYAZDEEN 3

Abstract. A non-null collection \mathcal{G} of subsets of a topological space (X, τ) is said to be a grill on X if (i) $\emptyset \notin \mathcal{G}$, (ii) $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$, (ii) $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$. A triple (X, τ, \mathcal{G}) is called a grill topological space. A new class $\mathcal{G}s_{\alpha}O(X)$ of $\mathcal{G}s_{\alpha}$ -open sets in a grill topological space with respect to \mathcal{G} is introduced. Also, we define $\mathcal{G}s_{\alpha}$ -continuous and $\mathcal{G}s_{\alpha}$ -open(closed) functions and study some of their important properties. In addition, we introduce a $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous function and investigate its properties.

1. INTRODUCTION AND PRELIMINARIES

Levine[6] introduced the concepts of semiopen set and semicontinuitous in topological spaces. Nijastad[10] defined the concepts of α -open set, α -interior and α -closure in topological spaces. Mashhour et al.[9] introduced the concepts of α -continuous and α -open mappings in topological spaces. Mashhour et al., [8], introduced the concepts of preopen set, pre-interior and pre-closure in a topological spaces. A subset A in X is said to be α -open (resp. semiopen, preopen) if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ (resp. $\operatorname{cl}(\operatorname{int}(A))$, $\operatorname{int}(\operatorname{cl}(A))$) and τ^{α} (resp. SO(X), PO(X)) denotes the family of α -open (resp. semiopen, preopen) sets. For any subset A of X, $(i) \alpha \operatorname{int}(A)$ (resp. $\operatorname{sint}(A)$, $\operatorname{pint}(A)$) = $\cup \{U : U \in \tau^{\alpha} (\operatorname{resp.} SO(X), PO(X))$ and $U \subseteq A\}$, $(ii) \alpha \operatorname{cl}(A)$ (resp. $\operatorname{scl}(A)$, $\operatorname{pcl}(A)$) = $\cap \{F : X - F \in \tau^{\alpha} (\operatorname{resp.} SO(X), PO(X))$, PO(X)) and $A \subseteq F\}$.

Choquet, [2], introduced the concept of grill on a topological space and the idea of grills has shown to be a essential tool for studying some topological concepts. A non-null collection \mathcal{G} of subsets of a topological space (X, τ) is called a *grill* on X if (i) $\emptyset \notin \mathcal{G}$, (ii) $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$, (iii) $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$. A triple (X, τ, \mathcal{G}) is called a *grill topological space*.

Roy and Mukherjee, [12], defined the mappings Φ and Ψ and introduced a

²⁰¹⁰ Mathematics Subject Classification. Primary: 54A05, 54C10, 54D10.

Key words and phrases. $\mathcal{G}_{S\alpha}$ -open set, $\mathcal{G}_{S\alpha}O(X)$, $\mathcal{G}_{S\alpha}$ -continuous function, $\mathcal{G}_{S\alpha}$ -open function, $(\mathcal{G}, \mathcal{G}')_{S\alpha}$ -continuous function.

unique topology $\tau_{\mathcal{G}}$ by a grill in topological spaces. For any point $x \in X$, $\tau(x)$ denotes the collection of all open neighborhoods of x. A mapping $\Phi: P(X) \to P(X)$ is defined by $\Phi(A) = \{x \in X : A \cap U \in \mathcal{G}, \text{ for all } U \in \tau(x)\}$ and $A \in P(X)$. A mapping $\Psi: P(X) \to P(X)$ is defined by $\Psi(A) = A \cup \Phi(A)$ for all $A \in P(X)$. Kuratowski, [4], defined the concept of Kuratowski closure axioms. For $A, B \subseteq X$, the mapping Ψ satisfies Kuratowski closure axioms: (i) $\Psi(\emptyset) = \emptyset$, (ii) if $A \subseteq B$, then $\Psi(A) \subseteq \Psi(B)$, (iii) $\Psi(\Psi(A)) = \Psi(A)$ and (iv) $\Psi(A \cup B) = \Psi(A) \cup \Psi(B)$. Corresponding to a grill \mathcal{G} on a topological space (X, τ) , there exists a unique topology $\tau_{\mathcal{G}}$ on X given by $\tau_{\mathcal{G}} = \{U \subseteq X : \Psi(X - U) = X - U\}$, where for any $A \subseteq X, \Psi(A) = A \cup \Phi(A) = \tau_{\mathcal{G}} cl(A)$ and $\tau \subseteq \tau_{\mathcal{G}}$.

The concept of decomposition of continuity in topological spaces and some classes of sets were defined (see [1, 3, 5, 7, 9, 11, 13, 14] for details). A subset A in X is said to be (i) Φ -open if $A \subseteq int(\Phi(A))$, (ii) \mathcal{G} - α .open if $A \subseteq int(\Psi(int(A)))$, (iii) \mathcal{G} -preopen if $A \subseteq int(\Psi(A))$, (iv) \mathcal{G} -semiopen if $A \subseteq \Psi(int(A))$, (v) \mathcal{G} - β .open if $A \subseteq cl(int(\Psi(A)))$, (vi) $\mathcal{G}s_p$ -open if $A \subseteq \Psi(pint(A))$. A subset A of X is called Φ -closed (resp. \mathcal{G} - α .closed, \mathcal{G} -preclosed, \mathcal{G} -semiclosed, \mathcal{G} - β .closed, $\mathcal{G}s_p$ -closed) if its complement X - A is Φ -open (resp. \mathcal{G} - α .open, \mathcal{G} -preopen, \mathcal{G} -semiopen, \mathcal{G} -semiopen, \mathcal{G} -g.open, $\mathcal{G}s_p$ -open). The family of all Φ -open (resp. \mathcal{G} - α .open, \mathcal{G} -preopen, \mathcal{G} -preopen, \mathcal{G} -g.open, $\mathcal{G}s_p$ -open) sets is denoted by $\Phi O(X)$ (resp. $\mathcal{G}\alpha O(X)$, $\mathcal{G}PO(X)$, $\mathcal{G}SO(X)$, $\mathcal{G}\beta O(X)$, $\mathcal{G}s_p O(X)$). A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be \mathcal{G} -semicontinuous if $f^{-1}(V) \in \mathcal{G}SO(X)$ for each $V \in \sigma$.

In this paper, we define the concept of $\mathcal{G}s_{\alpha}$ -open set in a grill topological space (X, τ, \mathcal{G}) . Also, we introduce $\mathcal{G}s_{\alpha}$ -interior and $\mathcal{G}s_{\alpha}$ -closure and we study some of their basic properties. Further, we define $\mathcal{G}s_{\alpha}$ -continuous, $\mathcal{G}s_{\alpha}$ -open, $\mathcal{G}s_{\alpha}$ -closed and $\mathcal{G}S^*$ -continuous functions in a grill topological space (X, τ, \mathcal{G}) and we investigate some of their fundamental properties. Moreover, we introduce a $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous function and we show that every $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous function is $\mathcal{G}s_{\alpha}$ -continuous, but the converse need not to be true.

Proposition 1.1. [12] Let (X, τ, \mathcal{G}) be a grill topological space. Then for all $A, B \subseteq X$:

(i) $A \subseteq B$ implies that $\Phi(A) \subseteq \Phi(B)$,

 $(ii) \ \Phi(A \cup B) = \Phi(A) \cup \Phi(B),$

 $(iii) \ \Phi(\Phi(A)) \subseteq \Phi(A) = cl(\Phi(A)) \subseteq cl(A).$

2. $\mathcal{G}s_{\alpha}$ -open set in grill topological spaces

Definition 2.1. Let (X, τ, \mathcal{G}) be a grill topological space and let A be a subset of X. Then A is said to be $\mathcal{G}s_{\alpha}$ -open if and only if there exists a $U \in \tau^{\alpha}$ such that $U \subseteq A \subseteq \Psi(U)$. A set A of X is $\mathcal{G}s_{\alpha}$ -closed if its complement X - A is $\mathcal{G}s_{\alpha}$ -open. The family of all $\mathcal{G}s_{\alpha}$ -open (resp. $\mathcal{G}s_{\alpha}$ -closed) sets is denoted by $\mathcal{G}s_{\alpha}O(X)$ (resp. $\mathcal{G}s_{\alpha}C(X)$).

Example 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}\}$ and $\mathcal{G} = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Then $\mathcal{G}s_{\alpha}O(X) = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$.

Theorem 1. Let (X, τ, \mathcal{G}) be a grill topological space and $A \subseteq X$. Then $A \in \mathcal{G}s_{\alpha}O(X)$ if and only if $A \subseteq \Psi(\alpha int(A))$.

Proof. If $A \in \mathcal{G}s_{\alpha}O(X)$, then there exists a $U \in \tau^{\alpha}$ such that $U \subseteq A \subseteq \Psi(U)$. But $U \subseteq A$ implies that $U \subseteq \alpha \operatorname{int}(A)$. Hence $\Psi(U) \subseteq \Psi(\alpha \operatorname{int}(A))$. Therefore $A \subseteq \Psi(\alpha \operatorname{int}(A))$. Conversely, let $A \subseteq \Psi(\alpha \operatorname{int}(A))$. To prove that $A \in \mathcal{G}s_{\alpha}O(X)$, take $U = \alpha \operatorname{int}(A)$, then $U \subseteq A \subseteq \Psi(U)$. Hence $A \in \mathcal{G}s_{\alpha}O(X)$. \Box

Corollary 1.1. If $A \subseteq X$, then $A \in \mathcal{G}s_{\alpha}O(X)$ if and only if $\Psi(A) = \Psi(\alpha int(A))$.

Proof. Let $A \in \mathcal{G}s_{\alpha}O(X)$. Then as Ψ is monotonic and idempotent, $\Psi(A) \subseteq \Psi(\Psi(\alpha \operatorname{int}(A))) = \Psi(\alpha \operatorname{int}(A)) \subseteq \Psi(A)$ implies that $\Psi(A) = \Psi(\alpha \operatorname{int}(A))$. The converse is trivial.

Corollary 1.2. If $A \subseteq X$, then $\Psi(\alpha int(A)) \in \mathcal{G}s_{\alpha}O(X)$.

Proof. Clearly $\Psi(\alpha \operatorname{int}(A)) = \Psi(\alpha \operatorname{int}(\alpha \operatorname{int}(A)) \subseteq \Psi(\alpha \operatorname{int}(\Psi(\alpha \operatorname{int}(A))))$. Then by Theorem 1, $\Psi(\alpha \operatorname{int}(A)) \in \mathcal{G}s_{\alpha}O(X)$.

Theorem 2. Let (X, τ, \mathcal{G}) be a grill topological space. If $A \in \mathcal{G}s_{\alpha}O(X)$ and $B \subseteq X$ such that $A \subseteq B \subseteq \Psi(\alpha int(A))$, then $B \in \mathcal{G}s_{\alpha}O(X)$.

Proof. Given $A \in \mathcal{G}s_{\alpha}O(X)$. Then by Theorem 1, $A \subseteq \Psi(\alpha \operatorname{int}(A))$. But $A \subseteq B$ implies that $\alpha \operatorname{int}(A) \subseteq \alpha \operatorname{int}(B)$, hence $\Psi(\alpha \operatorname{int}(A)) \subseteq \Psi(\alpha \operatorname{int}(B))$. Therefore, $B \subseteq \Psi(\alpha \operatorname{int}(A)) \subseteq \Psi(\alpha \operatorname{int}(B))$. Hence, $B \in \mathcal{G}s_{\alpha}O(X)$.

Corollary 2.1. If $A \in \mathcal{G}s_{\alpha}O(X)$ and $B \subseteq X$ such that $A \subseteq B \subseteq \Psi(A)$, then $B \in \mathcal{G}s_{\alpha}O(X)$.

Proof. Follows from the Theorem 2 and Corollary 1.1.

Theorem 3. Let (X, τ, \mathcal{G}) be a grill topological space. If $A \in \mathcal{G}SO(X)$, then $A \in \mathcal{G}s_{\alpha}O(X)$.

Proof. Let $A \in \mathcal{G}SO(X)$. Then $A \subseteq \Psi(\operatorname{int}(A))$. Since $\operatorname{int}(A) \subseteq \alpha \operatorname{int}(A)$, we have that $\Psi(\operatorname{int}(A)) \subseteq \Psi(\alpha \operatorname{int}(A))$ (by Theorem 2.4, [12]). Hence $A \subseteq \Psi(\alpha \operatorname{int}(A))$ and thus $A \in \mathcal{G}s_{\alpha}O(X)$.

Note that from the Definition 2.1, Theorem 3, Corollary 1, [10] and Remark 1, [11], we have that

(i) $\tau \subseteq \mathcal{G}\alpha O(X) \subseteq \tau^{\alpha} \subseteq \mathcal{G}s_{\alpha}O(X) \subseteq \mathcal{G}s_pO(X),$

(*ii*) $\mathcal{G}\alpha O(X) \subseteq \mathcal{G}SO(X) \subseteq \mathcal{G}s_{\alpha}O(X).$

But the converse need not be true as shown by the examples below.

Example 2.2. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{G} = \{\{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then:

(i) $A = \{a, b, c\} \in \mathcal{G}\alpha O(X)$, but $A \notin \tau$,

(*ii*) $B = \{a, c\} \in \mathcal{G}SO(X)$, but $B \notin \mathcal{G}\alpha O(X)$,

(*iii*) $C = \{b, d\} \in \mathcal{G}s_p O(X)$, but $C \notin \mathcal{G}s_\alpha O(X)$, (iv) $D = \{a, c\} \in \mathcal{G}s_\alpha O(X)$, but $D \notin \tau^{\alpha}$.

Example 2.3. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}\}$ and $\mathcal{G} = \{\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ Then $A = \{a, b\} \in \mathcal{G}s_{\alpha}O(X)$, but $A \notin \mathcal{G}SO(X)$. **Theorem 4.** Let (X, τ, \mathcal{G}) be a grill topological space. If $\tau^{\alpha} = \tau$, then $\mathcal{G}s_{\alpha}O(X) = \mathcal{G}SO(X)$.

Proof. By Theorem 3, $\mathcal{G}SO(X) \subseteq \mathcal{G}s_{\alpha}O(X)$. Let $A \in \mathcal{G}s_{\alpha}O(X)$. Then by Theorem 1, $A \subseteq \Psi(\alpha \operatorname{int}(A))$. Since $\tau^{\alpha} = \tau$, we have that $\alpha \operatorname{int}(A) = \operatorname{int}(A)$ implies that $A \subseteq \Psi(\alpha \operatorname{int}(A)) = \Psi(\operatorname{int}(A))$ and hence $A \in \mathcal{G}SO(X)$. Thus $\mathcal{G}s_{\alpha}O(X) \subseteq \mathcal{G}SO(X)$.

Theorem 5. Let (X, τ, \mathcal{G}) be a grill topological space. Then the following conditions hold:

(i) for each $\alpha \in J$, if $A_{\alpha} \in \mathcal{G}s_{\alpha}O(X)$, then $\bigcup_{\alpha \in J} A_{\alpha} \in \mathcal{G}s_{\alpha}O(X)$,

(ii) if $A \in \mathcal{G}s_{\alpha}O(X)$ and $U \in \tau^{\alpha}$, then $A \cap U \in \mathcal{G}s_{\alpha}O(X)$.

Proof. (i) Suppose $A_{\alpha} \in \mathcal{G}s_{\alpha}O(X)$, for each $\alpha \in J$. Then $A_{\alpha} \subseteq \Psi(\alpha \operatorname{int}(A_{\alpha}))$, for each $\alpha \in J$, implies that $\bigcup_{\alpha \in J} A_{\alpha} \subseteq \bigcup_{\alpha \in J} \Psi(\alpha \operatorname{int}(A_{\alpha})) \subseteq \Psi(\alpha \operatorname{int}(\bigcup_{\alpha \in J} A_{\alpha}))$. Therefore, $\bigcup_{\alpha \in J} A_{\alpha} \in \mathcal{G}s_{\alpha}O(X)$.

(ii) Let $A \in \mathcal{G}s_{\alpha}O(X)$ and $U \in \tau^{\alpha}$. Then $A \subseteq \Psi(\alpha \operatorname{int}(A))$. Now, $A \cap U \subseteq \Psi(\alpha \operatorname{int}(A)) \cap U = (\alpha \operatorname{int}(A) \cup \Phi(\alpha \operatorname{int}(A))) \cap U = (\alpha \operatorname{int}(A) \cap U) \cup (\Phi(\alpha \operatorname{int}(A)) \cap U) \subseteq \alpha \operatorname{int}(A \cap U) \cup \Phi(\alpha \operatorname{int}(A) \cap U)$ (by Theorem 2.10, [12]) = $\alpha \operatorname{int}(A \cap U) \cup \Phi(\alpha \operatorname{int}(A \cap U))$. Therefore, $A \cap U \in \mathcal{G}s_{\alpha}O(X)$.

Remark 2.1: The following example shows that if $A, B \in \mathcal{G}s_{\alpha}O(X)$, then $A \cap B \notin \mathcal{G}s_{\alpha}O(X)$.

Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}\}$ and $\mathcal{G} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ Then $\mathcal{G}s_{\alpha}O(X) = \{\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$ Consider $A = \{a, c\}$ and $B = \{a, d\}.$ Then $A, B \in \mathcal{G}s_{\alpha}O(X)$, but $A \cap B = \{a\} \notin \mathcal{G}s_{\alpha}O(X)$.

Theorem 6. Let (X, τ, \mathcal{G}) be a grill topological space and $A \subseteq X$. If $A \in \mathcal{G}s_{\alpha}C(X)$, then $\alpha int(\Psi(A)) \subseteq A$.

Proof. Suppose $A \in \mathcal{G}s_{\alpha}C(X)$. Then $X - A \in \mathcal{G}s_{\alpha}O(X)$ and hence $X - A \subseteq \Psi(\alpha \operatorname{int}(X - A)) \subseteq \alpha \operatorname{cl}(\alpha \operatorname{int}(X - A)) = X - \alpha \operatorname{int}(\alpha \operatorname{cl}(A)) \subseteq X - \alpha \operatorname{int}\Psi(A))$, implies that $\alpha \operatorname{int}(\Psi(A)) \subseteq A$.

Remark 2.2: For $A \subseteq X$, the following example shows that:

(i) if $\alpha \operatorname{int}(\Psi(A)) \subseteq A$, then $A \notin \mathcal{G}s_{\alpha}C(X)$;

(*ii*) $\alpha \operatorname{int}(\Psi(A)) \notin \mathcal{G}s_{\alpha}C(X).$

(i) Take $A = \{a\}$ in Example 2.3. Then $\alpha \operatorname{int}(\Psi(\{a\})) = \{a\} \subseteq \{a\}$. Therefore, $\alpha \operatorname{int}(\Psi(A)) \subseteq A$, but $A \notin \mathcal{G}s_{\alpha}C(X)$.

(*ii*) From (*i*), $\alpha \operatorname{int}(\Psi(\{a\})) = \{a\} \notin \mathcal{G}s_{\alpha}C(X)$. Thus, $\alpha \operatorname{int}(\Psi(A)) \notin \mathcal{G}s_{\alpha}C(X)$.

Theorem 7. Let (X, τ, \mathcal{G}) be a grill topological space and $A \subseteq X$ such that

$$X - \alpha int(\Psi(A)) = \Psi(\alpha int(X - A)).$$

Then the following conditions hold: (i) $A \in \mathcal{G}s_{\alpha}C(X)$ if and only if $\alpha int(\Psi(A)) \subseteq A$; (ii) $\alpha int(\Psi(A)) \in \mathcal{G}s_{\alpha}C(X)$. *Proof.* (i) Necessary part is proved by Theorem 6. Conversely, suppose that $\operatorname{aint}(\Psi(A)) \subseteq A$. Then $X - A \subseteq X - \operatorname{aint}(\Psi(A)) = \Psi(\operatorname{aint}(X - A))$, implies that $X - A \in \mathcal{G}s_{\alpha}O(X)$. Hence, $A \in \mathcal{G}s_{\alpha}C(X)$. (ii) Follows from (i).

Theorem 8. Let (X, τ, \mathcal{G}) be a grill topological space. If $A_{\alpha} \in \mathcal{G}s_{\alpha}C(X)$ for each $\alpha \in J$, then $\bigcap_{\alpha \in J} A_{\alpha} \in \mathcal{G}s_{\alpha}C(X)$.

Proof. Let $A_{\alpha} \in \mathcal{G}s_{\alpha}C(X)$. Then $X - A_{\alpha} \in \mathcal{G}s_{\alpha}O(X)$. By Theorem 5 (*i*), $\bigcup_{\alpha \in J}(X - A_{\alpha}) \in \mathcal{G}s_{\alpha}O(X)$. This implies that $\bigcup_{\alpha \in J}(X - A_{\alpha}) = X - \bigcap_{\alpha \in J}A_{\alpha} \in \mathcal{G}s_{\alpha}O(X)$ and hence $\bigcap_{\alpha \in J}A_{\alpha} \in \mathcal{G}s_{\alpha}C(X)$.

Definition 2.2. Let (X, τ, \mathcal{G}) be a grill topological space and $A \subseteq X$. Then (i) $\mathcal{G}s_{\alpha}$ -interior of A is defined as union of all $\mathcal{G}s_{\alpha}$ -open sets contained in A. Thus $\mathcal{G}s_{\alpha}$ int $(A) = \bigcup \{U : U \in \mathcal{G}s_{\alpha}O(X) \text{ and } U \subseteq A\},$ (ii) $\mathcal{G}s_{\alpha}$ -closure of A is defined as intersection of all $\mathcal{G}s_{\alpha}$ -closed sets containing A.

Thus $\mathcal{G}s_{\alpha}\mathrm{cl}(A) = \cap \{F : X - F \in \mathcal{G}s_{\alpha}O(X) \text{ and } A \subseteq F\}.$

Theorem 9. Let (X, τ, \mathcal{G}) be a grill topological space and $A \subseteq X$. Then the following conditions hold:

- (i) $\mathcal{G}s_{\alpha}int(A)$ is a $\mathcal{G}s_{\alpha}$ -open set contained in A,
- (ii) $\mathcal{G}s_{\alpha}cl(A)$ is a $\mathcal{G}s_{\alpha}$ -closed set containing A,
- (iii) A is $\mathcal{G}s_{\alpha}$ -closed if and only if $\mathcal{G}s_{\alpha} cl(A) = A$,
- (iv) A is $\mathcal{G}s_{\alpha}$ -open if and only if $\mathcal{G}s_{\alpha}$ int(A) = A,
- (v) $\mathcal{G}s_{\alpha}int(\mathcal{G}s_{\alpha}int(A)) = \mathcal{G}s_{\alpha}int(A),$
- $(vi) \ \mathcal{G}s_{\alpha} cl(\mathcal{G}s_{\alpha} cl(A)) = \mathcal{G}s_{\alpha} cl(A),$
- (vii) $\mathcal{G}s_{\alpha}int(A) = X \mathcal{G}s_{\alpha}cl(X A),$
- (viii) $\mathcal{G}s_{\alpha} cl(A) = X \mathcal{G}s_{\alpha} int(X A).$

Proof. (i) Follows from the Definition 2.2 (i) and Theorem 5 (i).

- (ii) Follows from the Definition 2.2 (ii) and Theorem 8.
- (iii) Follows from the condition (ii) and Definition 2.2 (ii).
- (iv) Follows from the condition (i) and Definition 2.2 (i).
- (v) Follows from the conditions (i) and (iv).
- (vi) Follows from the conditions (ii) and (iii).
- (vii) and (viii) Follows from the Definitions 2.1 and 2.2 (i), (ii).

Theorem 10. Let (X, τ, \mathcal{G}) be a grill topological space and $A, B \subseteq X$. Then the following conditions hold:

- (i) if $A \subseteq B$, then $\mathcal{G}s_{\alpha}int(A) \subseteq \mathcal{G}s_{\alpha}int(B)$;
- (*ii*) if $A \subseteq B$, then $\mathcal{G}s_{\alpha} cl(A) \subseteq \mathcal{G}s_{\alpha} cl(B)$;
- (*iii*) $\mathcal{G}s_{\alpha}int(A \cup B) \supseteq \mathcal{G}s_{\alpha}int(A) \cup \mathcal{G}s_{\alpha}int(B);$
- $(iv) \ \mathcal{G}s_{\alpha} cl(A \cap B) \subseteq \mathcal{G}s_{\alpha} cl(A) \cap \mathcal{G}s_{\alpha} cl(B);$
- (v) $\mathcal{G}s_{\alpha}int(A \cap B) \subseteq \mathcal{G}s_{\alpha}int(A) \cap \mathcal{G}s_{\alpha}int(B);$
- (vi) $\mathcal{G}s_{\alpha} cl(A \cup B) \supseteq \mathcal{G}s_{\alpha} cl(A) \cup \mathcal{G}s_{\alpha} cl(B).$

Proof. (i) and (ii) follows from the Definitions 2.2 (i) and 2.2 (ii), respectively. (iii) and (iv) follows from the condition (i), Theorem 5 (i) and the condition (ii), Theorem 8, respectively.

(v) and (vi) follows from the conditions (i) and (ii), respectively.

Theorem 11. Let (X, τ, \mathcal{G}) be a grill topological space and $A \subseteq X$. Then the following conditions hold:

- (i) If $\Psi(\alpha int(A)) \subseteq A$, then $\Psi(\alpha int(A)) \subseteq \mathcal{G}s_{\alpha} int(A)$.
- (ii) If $A \subseteq X$ and $X \alpha int(\Psi(A)) = \Psi(\alpha int(X A))$, then $\mathcal{G}s_{\alpha}cl(A) \subseteq \alpha int(\Psi(A))$.

Proof. (i) Since $\mathcal{G}s_{\alpha}$ int(A) is the greatest $\mathcal{G}s_{\alpha}$ -open set containing A and Corollary 2.1 shows that $\Psi(\alpha \operatorname{int}(A)) \in \mathcal{G}s_{\alpha}O(X)$. Therefore $\Psi(\alpha \operatorname{int}(A)) \subseteq \mathcal{G}s_{\alpha}\operatorname{int}(A)$.

(*ii*) Since $\mathcal{G}s_{\alpha}\mathrm{cl}(A)$ is the least $\mathcal{G}s_{\alpha}$ -closed set containing A and Theorem 7 (*ii*) shows that $\alpha \mathrm{int}(\Psi(A)) \in \mathcal{G}s_{\alpha}C(X)$. Therefore $\mathcal{G}s_{\alpha}\mathrm{cl}(A) \subseteq \alpha \mathrm{int}(\Psi(A))$. \Box

Definition 2.3. Let (X, τ, \mathcal{G}) be a grill topological space and (Y, σ) a topological space. A function $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be $\mathcal{G}s_{\alpha}$ -continuous if $f^{-1}(V) \in \mathcal{G}s_{\alpha}O(X)$, for each $V \in \sigma^{\alpha}$.

Example 2.4. Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\emptyset, X, \{b\}\}, \sigma = \{\emptyset, Y, \{1, 2\}\}$ and $\mathcal{G} = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Then $\mathcal{G}s_{\alpha}O(X) = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma^{\alpha} = \{\emptyset, Y, \{1, 2\}\}$. Define $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ by f(a) = 3, f(b) = 1, and f(c) = 2. Then inverse image of every α -open sets in Y is $\mathcal{G}s_{\alpha}$ -open in X. Hence, f is $\mathcal{G}s_{\alpha}$ -continuous.

Remark 2.3: The concepts of \mathcal{G} -semicontinuous and $\mathcal{G}s_{\alpha}$ -continuous are independent.

(i) Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{a\}\}, \sigma = \{\emptyset, Y, \{4\}, \{3, 4\}, \{1, 3, 4\}\}$ and $\mathcal{G} = \{\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $\mathcal{G}SO(X) = \{\emptyset, X, \{a\}\}, \mathcal{G}s_{\alpha}O(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ and $\sigma^{\alpha} = \{\emptyset, Y, \{4\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$. Define $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ by f(a) = 4, f(b) = 2, f(c) = 3 and f(d) = 1. Then the function f is $\mathcal{G}s_{\alpha}$ -continuous. Also, $f^{-1}(\{3, 4\}) = \{a, c\}$ is not \mathcal{G} -semicontinuous.

(*ii*) Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{a\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}\}, \sigma = \{\emptyset, Y, \{2\}, \{1, 2\}\} \text{ and } \mathcal{G} = \{\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ Then $\mathcal{G}SO(X) = \{\emptyset, X, \{a\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{a, c, d\}, \{a, c, d\}, \mathcal{G}s_{\alpha}O(X) = \{\emptyset, X, \{a\}, \{d\}, \{a, c\}, \{a, d\}, \{a, c, d\}, \{a, c, d\}\} \text{ and } \sigma^{\alpha} = \{\emptyset, Y, \{2\}, \{1, 2\}, \{2, 3\}, \{2, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2, 3, 4\}\}.$ Define $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ by f(a) = 2, f(b) = 3, f(c) = 1 and f(d) = 4. Then the function f is \mathcal{G} -semicontinuous. Also the inverse image $f^{-1}(\{2, 3\}) = \{a, b\}$ is not $\mathcal{G}s_{\alpha}$ -open in X for the α -open set $\{2, 3\}$ of Y. Hence, f is not $\mathcal{G}s_{\alpha}$ -continuous.

From (i) and (ii), we got the concepts of \mathcal{G} -semicontinuous and $\mathcal{G}s_{\alpha}$ -continuous are independent.

Theorem 12. Let (X, τ, \mathcal{G}) be a grill topological space and (Y, σ) a topological space. For a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is $\mathcal{G}s_{\alpha}$ -continuous;
- (ii) For each $F \in \alpha C(Y), f^{-1}(F) \in \mathcal{G}s_{\alpha}C(X),$
- (iii) For each $x \in X$ and each $V \in \sigma^{\alpha}$ containing f(x), there exists a $U \in \mathcal{G}s_{\alpha}O(X)$ containing x such that $f(U) \subseteq V$.

Proof. $(i) \Leftrightarrow (ii)$. It is obvious.

(i) \Rightarrow (iii). Let $V \in \sigma^{\alpha}$ and $f(x) \in V(x \in X)$. Then by (i), $f^{-1}(V) \in \mathcal{G}s_{\alpha}O(X)$ containing x. Taking $f^{-1}(V) = U$, we have that $x \in U$ and $f(U) \subseteq V$. (iii) \Rightarrow (i). Let $V \in \sigma^{\alpha}$ and $x \in f^{-1}(V)$. Then $f(x) \in V \in \sigma^{\alpha}$ and hence by (iii), there exists a $U \in \mathcal{G}s_{\alpha}O(X)$ containing x such that $f(U) \subseteq V$. Now $x \in U \subseteq$ $\Psi(\alpha \operatorname{int}(U)) \subseteq \Psi(\alpha \operatorname{int}(f^{-1}(V)))$. This shows that $f^{-1}(V) \subseteq \Psi(\alpha \operatorname{int}(f^{-1}(V)))$. Thus f is $\mathcal{G}s_{\alpha}$ -continuous.

Theorem 13. Let (X, τ, \mathcal{G}) be a grill topological space and (Y, σ) a topological space. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is $\mathcal{G}s_{\alpha}$ -continuous if and only if the graph function $g : X \to X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$, is $\mathcal{G}s_{\alpha}$ -continuous.

Proof. Suppose that f is $\mathcal{G}s_{\alpha}$ -continuous. Let $x \in X$ and $W \in \alpha(X \times Y)$ containing g(x). Then there exists a $U \in \tau^{\alpha}$ and $V \in \sigma^{\alpha}$ such that $g(x) = (x, f(x)) \in U \times V \subseteq W$. Since f is $\mathcal{G}s_{\alpha}$ -continuous, there exists a $G \in \mathcal{G}s_{\alpha}O(X)$ containing x such that $f(G) \subseteq V$. By Theorem 4 (ii), $G \cap U \in \mathcal{G}s_{\alpha}O(X)$ and $g(G \cap U) \subseteq U \times V \subseteq W$. This shows that g is $\mathcal{G}s_{\alpha}$ -continuous. Conversely, suppose that g is $\mathcal{G}s_{\alpha}$ -continuous. Let $x \in X$ and $V \in \sigma^{\alpha}$ containing f(x). Then $X \times V \in \alpha(X \times Y)$ and by $\mathcal{G}s_{\alpha}$ -continuity of g, there exists a $U \in \mathcal{G}s_{\alpha}O(X)$ containing x such that $g(U) \subseteq X \times V$. Thus we have that $f(U) \subseteq V$ and hence f is $\mathcal{G}s_{\alpha}$ -continuous.

Definition 2.4. Let (X, τ) be a topological space and (Y, σ, \mathcal{G}) a grill topological space. A function $f: (X, \tau) \to (Y, \sigma, \mathcal{G})$ is said to be $\mathcal{G}s_{\alpha}$ -open (resp. $\mathcal{G}s_{\alpha}$ -closed) if for each $U \in \tau^{\alpha}$ (resp. for each $U \in \tau^{\alpha c}$), f(U) is $\mathcal{G}s_{\alpha}$ -open (resp. $\mathcal{G}s_{\alpha}$ -closed) in (Y, σ, \mathcal{G}) .

Theorem 14. Let (X, τ) be a topological space and (Y, σ, \mathcal{G}) a grill topological space. A function $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$ is $\mathcal{G}s_{\alpha}$ -open if and only if for each $x \in X$ and each α -neighborhood U of x, there exists a $V \in \mathcal{G}s_{\alpha}O(Y)$ such that $f(x) \in V \subseteq f(U)$.

Proof. Suppose that f is a $\mathcal{G}s_{\alpha}$ -open function and let $x \in X$. Also let U be any α -neighborhood of x. Then there exists $G \in \tau^{\alpha}$ such that $x \in G \subseteq U$. Since f is $\mathcal{G}s_{\alpha}$ -open, f(G) = V (say) $\in \mathcal{G}s_{\alpha}O(Y)$ and $f(x) \in V \subseteq f(U)$. Conversely, suppose that $U \in \tau^{\alpha}$. Then for each $x \in U$, there exists a $V_x \in \mathcal{G}s_{\alpha}O(Y)$ such that $f(x) \in V_x \subseteq f(U)$. Thus $f(U) = \bigcup \{V_x : x \in U\}$ and hence by Theorem 2.5(i), $f(U) \in \mathcal{G}s_{\alpha}O(Y)$. This shows that f is $\mathcal{G}s_{\alpha}$ -open.

Theorem 15. Let (X, τ) be a topological space, (Y, σ, \mathcal{G}) a grill topological space and let $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$ be a $\mathcal{G}s_{\alpha}$ -open function. If $V \subseteq Y$ and $F \in \tau^{\alpha c}$ containing $f^{-1}(V)$, then there exists a $H \in \mathcal{G}s_{\alpha}O(Y)$ containing V such that $f^{-1}(H) \subseteq F$.

Proof. Suppose that f is $\mathcal{G}s_{\alpha}$ -open. Let $V \subseteq Y$ and $F \in \tau^{\alpha c}$ containing $f^{-1}(V)$. Then $X - F \in \tau^{\alpha}$ and by $\mathcal{G}s_{\alpha}$ -openness of f, $f(X - F) \in \mathcal{G}s_{\alpha}O(Y)$. Thus $H = Y - f(X - F) \in \mathcal{G}s_{\alpha}C(Y)$ consequently $f^{-1}(V) \subseteq F$ implies that $V \subseteq H$. Further, we obtain that $f^{-1}(H) \subseteq F$.

Theorem 16. Let (X, τ) be a topological space and (Y, σ, \mathcal{G}) a grill topological space. For any bijection $f : (X, \tau) \to (Y, \sigma, \mathcal{G})$ the following statements are equivalent:

(i) $f^{-1}: (Y, \sigma, \mathcal{G}) \to (X, \tau)$ is $\mathcal{G}s_{\alpha}$ -continuous; (ii) f is $\mathcal{G}s_{\alpha}$ -open; (iii) f is $\mathcal{G}s_{\alpha}$ -closed.

Proof. It is obvious.

Definition 2.5. Let (X, τ, \mathcal{G}) be a grill topological space and a subset A of X is said to be a $\mathcal{G}S^*$ -set if $A = U \cap V$, where $U \in \tau^{\alpha}$, $V \subseteq X$ and $\Psi(\alpha \operatorname{int}(V)) = \alpha \operatorname{int}(V)$.

Theorem 17. Let (X, τ, \mathcal{G}) be a grill topological space and let $A \subseteq X$. Then $A \in \tau^{\alpha}$ if and only if $A \in \mathcal{G}s_{\alpha}O(X)$ and A is a $\mathcal{G}S^*$ -set in (X, τ, \mathcal{G}) .

Proof. Let $A \in \tau^{\alpha}$. Then $A \in \mathcal{G}s_{\alpha}O(X)$, implies that $A \subseteq \Psi(\alpha \operatorname{int}(A))$. Also A can be expressed as $A = A \cap X$, where $A \in \tau^{\alpha}$ and $\Psi(\alpha \operatorname{int}(X)) = \alpha \operatorname{int}(X)$. Thus A is a $\mathcal{G}S^*$ -set. Conversely, let $A \in \mathcal{G}s_{\alpha}O(X)$ and A be a $\mathcal{G}S^*$ -set. Thus $A \subseteq \Psi(\alpha \operatorname{int}(A)) = \Psi(\alpha \operatorname{int}(U \cap V))$, where $U \in \tau^{\alpha}$ and $\Psi(\alpha \operatorname{int}(V)) = \alpha \operatorname{int}(V)$. Now $A \subseteq U \cap A \subseteq U \cap \Psi(\alpha \operatorname{int}(U \cap V)) = U \cap \Psi(U \cap \alpha \operatorname{int}(V)) \subseteq U \cap \Psi(U) \cap \Psi(\alpha \operatorname{int}(V)) = U \cap \alpha \operatorname{int}(V) = \alpha \operatorname{int}(A)$. Hence $A \in \tau^{\alpha}$.

Definition 2.6. Let (X, τ, \mathcal{G}) be a grill topological space and (Y, σ) a topological space. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is $\mathcal{G}S^*$ -continuous if for each $V \in \sigma^{\alpha}$, $f^{-1}(V)$ is a $\mathcal{G}S^*$ -set in (X, τ, \mathcal{G}) .

Theorem 18. Let (X, τ, \mathcal{G}) be a grill topological space and (Y, σ) a topological space. Then for a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is α -continuous,
- (ii) f is $\mathcal{G}s_{\alpha}$ -continuous and $\mathcal{G}S^*$ -continuous.

Proof. It is obvious.

Definition 2.7. Let (X, τ, \mathcal{G}) and $(Y, \sigma, \mathcal{G}')$ be two grill topological spaces. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma, \mathcal{G}')$ is said to be $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous if $f^{-1}(V) \in \mathcal{G}s_{\alpha}O(X)$ whenever $V \in \mathcal{G}'s_{\alpha}O(Y)$.

Note that, in the Example 2.4, consider $\mathcal{G}' = \{\{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}, Y\}$. Then $\mathcal{G}'s_{\alpha}O(Y) = \sigma^{\alpha}$. Hence the function f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous.

Remark 2.4: Every $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous function is $\mathcal{G}s_{\alpha}$ -continuous, but the converse need not be true.

Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{\emptyset, Y, \{3\}, \{4\}, \{3, 4\}, \{1, 3, 4\}\}, \mathcal{G} = \{\{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ and $\mathcal{G}' = \{\{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, Y\}.$

Then $\mathcal{G}s_{\alpha}O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ and $\mathcal{G}'s_{\alpha}O(Y) = \{\emptyset, Y, \{3\}, \{4\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$. Define a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma, \mathcal{G}')$ by f(a) = 3, f(b) = 4, f(c) = 2 and f(d) = 1. Then f is $\mathcal{G}s_{\alpha}$ -continuous. Since $\{2, 4\} \in \mathcal{G}'s_{\alpha}O(Y)$, but $f^{-1}(\{2, 4\}) = \{b, c\} \notin \mathcal{G}s_{\alpha}O(X)$. Hence f is not $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous.

Definition 2.8. (i) Let (X, τ, \mathcal{G}) be a grill topological space and a subset A of X is said to be a $\mathcal{G}s_{\alpha}$ -neighborhood of a point $x \in X$ if there exists a set $U \in \mathcal{G}s_{\alpha}O(X)$ such that $x \in U \subseteq A$.

Note that $\mathcal{G}s_{\alpha}$ -neighborhood of x may be replaced by $\mathcal{G}s_{\alpha}$ -open neighborhood of x.

(ii) Let (X, τ, \mathcal{G}) be a grill topological space. $A \subseteq X$ and $p \in X$. Then p is called a $\mathcal{G}s_{\alpha}$ -limit point of A if $U \cap (A - \{p\}) \neq \emptyset$, for any set $U \in \mathcal{G}s_{\alpha}O(X)$ containing p. The set of all $\mathcal{G}s_{\alpha}$ -limit points of A is called a $\mathcal{G}s_{\alpha}$ -derived set of A and is denoted by $\mathcal{G}s_{\alpha}d(A)$. Clearly, if $A \subseteq B$ then $\mathcal{G}s_{\alpha}d(A) \subseteq \mathcal{G}s_{\alpha}d(B)$.

Remark 2.5: From the Definition 2.8 (ii), it follows that p is a $\mathcal{G}s_{\alpha}$ -limit point of A if and only if $p \in \mathcal{G}s_{\alpha} \operatorname{cl}(A - \{p\})$.

Theorem 19. Let (X, τ, \mathcal{G}) be a grill topological space. For any $A, B \subseteq X$, the $\mathcal{G}s_{\alpha}$ -derived sets have the following properties:

- (i) $\mathcal{G}s_{\alpha} cl(A) \supseteq A \cup \mathcal{G}s_{\alpha} d(A);$
- $(ii) \cup_i \mathcal{G}s_\alpha d(A_i) = \mathcal{G}s_\alpha d(\cup_i A_i);$
- (*iii*) $\mathcal{G}s_{\alpha}d(\mathcal{G}s_{\alpha}d(A)) \subseteq \mathcal{G}s_{\alpha}d(A);$
- $(iv) \ \mathcal{G}s_{\alpha} cl(\mathcal{G}s_{\alpha} d(A)) = \mathcal{G}s_{\alpha} d(A)).$

Proof. Follows from the Definition 2.8 (ii) and Remark 2.5

Theorem 20. Let (X, τ, \mathcal{G}) and $(Y, \sigma, \mathcal{G}')$ be two grill topological spaces. If

 $f: (X, \tau, \mathcal{G}) \to (Y, \sigma, \mathcal{G}')$ is a function, then the following statements are equivalent:

- (i) f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous,
- (ii) for each $x \in X$, the inverse of every $\mathcal{G}'s_{\alpha}$ -neighborhood of f(x) is a $\mathcal{G}s_{\alpha}$ -neighborhood of x,
- (iii) for each $x \in X$ and each $\mathcal{G}'s_{\alpha}$ -neighborhood B of f(x), there is a $\mathcal{G}s_{\alpha}$ neighborhood A of x such that $f(A) \subseteq B$,
- (iv) for each $x \in X$ and each set $B \in \mathcal{G}' s_{\alpha} O(Y)$ contains f(x), there exists a set $A \in \mathcal{G} s_{\alpha} O(X)$ containing x such that $f(A) \subseteq B$,
- (v) $f(\mathcal{G}s_{\alpha} cl(A)) \subseteq \mathcal{G}'s_{\alpha} cl(f(A))$ holds for every subset A of X,

88 D. SARAVANAKUMAR, N. KALAIVANI, AND M. MOHAMED RIYAZDEEN

(vi) for any set $H \in \mathcal{G}'s_{\alpha}C(Y)$, $f^{-1}(H) \in \mathcal{G}s_{\alpha}C(X)$.

Proof. $(i) \Rightarrow (ii)$. Let $x \in X$ and B be a $\mathcal{G}'s_{\alpha}$ -neighborhood of f(x). By Definition 2.8 (i), there exists $V \in \mathcal{G}'s_{\alpha}O(Y)$ such that $f(x) \in V \subseteq B$. This implies that $x \in f^{-1}(V) \subseteq f^{-1}(B)$. Since f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous, so $f^{-1}(V) \in \mathcal{G}s_{\alpha}O(X)$. Hence $f^{-1}(B)$ is a $\mathcal{G}s_{\alpha}$ -neighborhood of x.

 $(ii) \Rightarrow (i)$. Let $B \in \mathcal{G}'s_{\alpha}O(Y)$. Put $A = f^{-1}(B)$. Let $x \in A$. Then $f(x) \in B$. Clearly, B (being $\mathcal{G}'s_{\alpha}$ -open) is a $\mathcal{G}'s_{\alpha}$ -neighborhood of f(x). By $(ii), A = f^{-1}(B)$ is a $\mathcal{G}s_{\alpha}$ -neighborhood of x. Hence by Definition 2.8 (i), there exists $A_x \in \mathcal{G}s_{\alpha}O(X)$ such that $x \in A_x \subseteq A$. This implies that $A = \bigcup_{x \in A} A_x$. By Theorem 5 (i), we have that $A \in \mathcal{G}s_{\alpha}O(X)$. Therefore f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous.

 $(i) \Rightarrow (iii)$. Let $x \in X$ and B be a $\mathcal{G}'s_{\alpha}$ -neighborhood of f(x). Then, there exists $O_{f(x)} \in \mathcal{G}'s_{\alpha}O(Y)$ such that $f(x) \in O_{f(x)} \subseteq B$. It follows that $x \in f^{-1}(O_{f(x)}) \subseteq f^{-1}(B)$. By $(i), f^{-1}(O_{f(x)}) \in \mathcal{G}s_{\alpha}O(X)$. Let $A = f^{-1}(B)$. Then it follows that A is $\mathcal{G}s_{\alpha}$ -neighborhood of x and $f(A) = f(f^{-1}(B)) \subseteq B$.

 $(iii) \Rightarrow (i)$. Let $U \in \mathcal{G}'s_{\alpha}O(Y)$. Take $W = f^{-1}(U)$. Let $x \in W$. Then $f(x) \in U$. Thus U is a $\mathcal{G}'s_{\alpha}$ -neighborhood of f(x). By (iii), there exists a $\mathcal{G}s_{\alpha}$ -neighborhood V_x of x such that $f(V_x) \subseteq U$. Thus it follows that $x \in V_x \subseteq f^{-1}(f(V_x)) \subseteq f^{-1}(U) = W$. Since V_x is a $\mathcal{G}s_{\alpha}$ -neighborhood of x, which implies that there exists a $W_x \in \mathcal{G}s_{\alpha}O(X)$ such that $x \in W_x \subseteq W$. This implies that $W = \bigcup_{x \in W} W_x$. By Theorem 5 $(i), W \in \mathcal{G}s_{\alpha}O(X)$. Thus f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous. $(iii) \Rightarrow (iv)$. We may replace the $\mathcal{G}s_{\alpha}$ -neighborhood of x as $\mathcal{G}s_{\alpha}$ -open neighborhood of x in condition (iii). Straightforward.

 $(iv) \Rightarrow (v)$. Let $y \in f(\mathcal{G}s_{\alpha}\mathrm{cl}(A))$ and any set $V \in \mathcal{G}'s_{\alpha}O(Y)$ containing y. Then, there exists a point $x \in X$ and a set $U \in \mathcal{G}s_{\alpha}O(X)$ such that $x \in U$ with f(x) = y and $f(U) \subseteq V$. Since $x \in \mathcal{G}s_{\alpha}\mathrm{cl}(A)$, we have that $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$. This implies that $y \in \mathcal{G}'s_{\alpha}\mathrm{cl}(f(A))$. Therefore, we have that $f(\mathcal{G}s_{\alpha}\mathrm{cl}(A)) \subseteq \mathcal{G}'s_{\alpha}\mathrm{cl}(f(A))$.

 $(v) \Rightarrow (vi)$. Let $H \in \mathcal{G}'s_{\alpha}C(Y)$. Then $\mathcal{G}'s_{\alpha}\mathrm{cl}(H) = H$. By condition (v), $f(\mathcal{G}s_{\alpha}\mathrm{cl}(f^{-1}(H))) \subseteq \mathcal{G}'s_{\alpha}\mathrm{cl}(f(f^{-1}(H))) \subseteq \mathcal{G}'s_{\alpha}\mathrm{cl}(H) = H$ holds. Therefore $\mathcal{G}s_{\alpha}\mathrm{cl}(f^{-1}(H)) \subseteq f^{-1}(H)$ and thus $f^{-1}(H) = \mathcal{G}s_{\alpha}\mathrm{cl}(f^{-1}(H))$. Hence $f^{-1}(H) \in \mathcal{G}s_{\alpha}C(X)$.

 $(vi) \Rightarrow (i).$ Let $B \in \mathcal{G}s_{\alpha}O(X)$. We take H = Y - B. Then $H \in \mathcal{G}'s_{\alpha}C(Y)$. By $(iv), f^{-1}(H) \in \mathcal{G}s_{\alpha}C(X)$. Hence $f^{-1}(B) = X - f^{-1}(Y - B) = X - f^{-1}(H) \in \mathcal{G}s_{\alpha}O(X)$.

Theorem 21. Let (X, τ, \mathcal{G}) and $(Y, \sigma, \mathcal{G}')$ be two grill topological spaces. If $f : (X, \tau, \mathcal{G}) \to (Y, \sigma, \mathcal{G}')$ is a function, then f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous if and only if $f(\mathcal{G}s_{\alpha}d(A)) \subseteq \mathcal{G}'s_{\alpha}cl(f(A))$, for all $A \subseteq X$.

Proof. Let $f : (X, \tau, \mathcal{G}) \to (Y, \sigma, \mathcal{G}')$ be $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous, $A \subseteq X$ and $x \in \mathcal{G}s_{\alpha}d(A)$. Assume that $f(x) \notin f(A)$ and let V denote a $\mathcal{G}'s_{\alpha}$ -neighborhood of f(x). Since f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous and by Theorem 2.20(iii), there exists a $\mathcal{G}s_{\alpha}$ -neighborhood U of x such that $f(U) \subseteq V$. From $x \in \mathcal{G}s_{\alpha}d(A)$, it follows that $U \cap A \neq \emptyset$, there exists at least one element $a \in U \cap A$ such that $f(a) \in f(A)$ and $f(a) \in V$. Since $f(x) \notin f(A)$, we have that $f(a) \neq f(x)$. Thus every $\mathcal{G}'s_{\alpha}$ -neighborhood of

f(x) contains an element f(a) of f(A) different from f(x). Consequently, $f(x) \in \mathcal{G}'s_{\alpha}d(f(A))$. Conversely, suppose that f is not $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous. Then by Theorem 2.20(iii), there exists $x \in X$ and a $\mathcal{G}'s_{\alpha}$ -neighborhood V of f(x) such that every $\mathcal{G}s_{\alpha}$ -neighborhood U of x contains at least one element $a \in U$ for which $f(a) \notin V$. Put $A = \{a \in X : f(a) \notin V\}$. Since $f(x) \in V$, therefore $x \notin A$ and hence $f(x) \notin f(A)$. Since $f(A) \cap (V - \{f(x)\}) = \emptyset$, therefore $f(x) \notin \mathcal{G}'s_{\alpha}d(f(A))$. It follows that $f(x) \in f(\mathcal{G}s_{\alpha}d(A)) - (f(A) \cup \mathcal{G}'s_{\alpha}d(f(A))) \neq \emptyset$, which is a contradiction to the given condition.

Theorem 22. Let (X, τ, \mathcal{G}) and $(Y, \sigma, \mathcal{G}')$ be two grill topological spaces. If $f : (X, \tau, \mathcal{G}) \to (Y, \sigma, \mathcal{G}')$ is an injective function, then f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous if and only if $f(\mathcal{G}s_{\alpha}d(A)) \subseteq \mathcal{G}'s_{\alpha}d(f(A))$, for all $A \subseteq X$.

Proof. Let $A \subseteq X$, $x \in \mathcal{G}s_{\alpha}d(A)$ and V be a $\mathcal{G}'s_{\alpha}$ -neighborhood of f(x). Since f is $(\mathcal{G}, \mathcal{G}')s_{\alpha}$ -continuous, so by Theorem 20 (*iii*), there exists a $\mathcal{G}s_{\alpha}$ -neighborhood U of x such that $f(U) \subseteq V$. But $x \in \mathcal{G}s_{\alpha}d(A)$ gives there exists an element $a \in U \cap A$ such that $a \neq x$. Clearly $f(a) \in f(A)$ and since f is injective, $f(a) \neq f(x)$. Thus every $\mathcal{G}'s_{\alpha}$ -neighborhood V of f(x) contains an element f(a) of f(A) different from f(x). Consequently, $f(x) \in \mathcal{G}'s_{\alpha}d(f(A))$. Therefore, we have that $f(\mathcal{G}s_{\alpha}d(A)) \subseteq \mathcal{G}'s_{\alpha}d(f(A))$. Converse follows from the Theorem 21.

References

- M. E. Abd El-Monsef, A. M. Kozae, Some generalized forms of compactness and closeness, Delta J. Sci., 9(2), (1985), 257-269.
- [2] G. Choquet, Sur les notions de filtre et grille, Comptes Rendus Acad. Sci. Paris, 224, (1947), 171-173.
- [3] E. Hatir, S. Jafari, On some new classes of sets and a new decomposition of continuity via grills, J. Adv. Math. Studies, 3(1), (2010), 33-40.
- [4] K. Kuratowski, Topologie, Warszawa, 1933.
- [5] N. Levine A decomposition of continuity in topological spaces, Amer Math. Monthly, 68 (1961), 44-46.
- [6] N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70, (1963), 36-41.
- [7] D. Mandal, M. N. Mukerjee, On a class of sets via grill: A decomposition of continuity, An. St. Univ. Ovidius Constanta, 20, (2012), 307-316.
- [8] A. S. Mashhour, M. E. Abd EL-Monsef, S. N. El-Deep, On pre-continuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53, (1982), 47-53.
- [9] A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb α-continuous and α-open mappings, Acta Math, Hung. 41, (1983), 213-218.
- [10] O. Nijastad, On some classes of nearly open sets, Pacific J. Math., 15, (1965), 961-970.
- [11] A. Al-Omari, T. Noiri, Decompositions of continuity via grills, Jordan J. Mat. Stat. 4, (2011), 33-46.
- [12] B. Roy, M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33(4), (2007), 771-786.
- [13] B. Roy, M. N. Mukherjee, Concerning topologies induced by principal grills, An. Stiint. Univ. AL. I. Cuza Iasi. Mat. (N. S.), 55(2), (2009), 285-294.
- [14] D. Saravanakumar, N. Kalaivani, On Gsp-open set in grill topological spaces, J. New Theory, 23(4), (2018), 85-92.

90 D. SARAVANAKUMAR, N. KALAIVANI, AND M. MOHAMED RIYAZDEEN

 ¹ PG and Research Department of Mathematics, Thiagarajar College, Madurai, India and Department of Mathematics, M.S.S. Wakf Board College, Madurai, India. Email address: drdstop@gmail.com, dsktcm1@gmail.com

 2 Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, India $\mathit{Email}\ address:\ kalaivani.rajam@gmail.com$

³ Department of Mathematics, M.S.S. Wakf Board College, Madurai, India *Email address*: mhmdriyazdeen@gmail.com

Received 9.7.2020 Revised 24.10.2020 Accepted 26.10.2020