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COMPARISON OF TWO NUMERICAL METHODS FOR
FRACTIONAL-ORDER ROSSLER SYSTEM

YLLDRITA SEFERI !, GJORGJI MARKOSKI 2, AND ALEKSANDAR GJURCHINOVSKI 2

Abstract. In this paper, we numerically study the chaotic behavior of the
fractional-order Rossler system comparing the numerical solutions of the sys-
tem with Adams-Bashforth-Moulton method (FABM) and Fractional Multi-
step Differential Transformation method (FMDTM). The fractional deriva-
tives are described in the Caputo sense. FABM method acts like a predictor-
corrector pair compared with FMDTM, which is a semi-numerical method
that exploits the power-series representation of the solution. Numerically ob-
tained results are analyzed to compare the different integration algorithms.
We quantify the distinction between the methods for arbitrary chosen system
parameters in the chaotic regime. We have shown numerically that the differ-
ence between the results is less pronounced as the value of the fractional-order
becomes closer to one.

1. INTRODUCTION

The theory of fractional-order derivatives (or derivatives of non-integer order)
goes back to Leibniz’s letter to L’Hospital, dated 30 September 1695, in which
the meaning of derivative of order one-half was discussed. Although fractional
calculus has a 300-year-old history, its applications to physics and engineering are
just recent focus of interest.

In this paper, the approximate solutions of the well-known fractional-order
Rossler system are investigated using different numerical methods. For this sys-
tem chaotic behavior exists for fractional-order derivatives as low as 2.4 [8], but
in our case-study, we explore the interval (0,1] . Like many other studies of
fractional-order dynamics, we investigate the behavior of Rossler system through
numerical simulations, in this case by comparing fractional Adams-Bashforth-
Moulton method (FABM) and fractional Multistep Differential Transformation
method (FMDTM) [2] B].

53



54 Y. SEFERI, GJ. MARKOSKI, AND A. GJURCHINOVSKI

FIGURE 1. Simulation result of the fractional-order Rossler system
(1.1) in state space for parameters a = 0.2,b = 0.2,¢ = 5.7 and frac-
tional order v = 0.9 for simulation time 120s, with initial conditions

(2(0),4(0), 2(0)) = (0,0,0).

In the following we will explore the numerical solution of the fractional Rossler
system by fixing the parameter values at a = 0.1, b = 0.1 and ¢ = 14.

In 1976 Rossler [5] proposed a simple nonlinear system with a strange attractor
with a single quadratic nonlinearity in the differential equations, with no a-priori
relevance to any real physical system at that time. The original theoretical equa-
tions were later found to be useful in modeling equilibrium chemical reactions.
This attractor can have only one chaotic manifold, which is a solution to the
following equations for certain parameter values a, b, ¢, and v:

Dia(t) = —(y(t) + (1))
Dy =(t) = x(t) + ay(t)
Dyy(t) = b+ x(t)z(t) — cz(t). (1.1)

Here, Dy is time fractional-order derivative defined in the Caputo sense. For
example, for a = 0.2, b = 0.2, ¢ = 5.7, and fractional order v = 0.9 there exist a
chaotic scroll attractor (see Fig. 1) and an unstable stationary point at

c—Vc2—4ab c—+c%—4ab c—+/c?—4ab
T = ( 9 y 9 ) )
a 2a
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2. FRACTIONAL MULTI-STEP DIFFERENTIAL TRANSFORM METHOD

The Discrete Transformation Method (DTM) is used to provide approximate
solutions for a wide class of nonlinear problems in terms of convergent series with
easily computable components. The method, however, has some drawbacks: the
series solution always converges in a very small region and it has slow convergent
rate in the wider region [2]. To overcome this shortcoming, we present in this
section the FMDTM that was originally developed for the numerical solutions of
ordinary differential equations [6]. For this purpose, we consider the following
nonlinear initial value problem:

ftz 2, ...,z™)=0 (2.1)

subject to initial conditions z(®)(0) = ¢x, k=0,1,...,v — 1.

Let [0,T] be the interval over which we want to find the solution of the initial
value problem . In actual applications of the DTM, the approximate solution
of the initial value problem can be expressed by the finite series,

N
z(t) =Y ant", te€[0,T] (2.2)
n=0

The Multi-step approach introduces a new idea for constructing the approximate
solution. Assume that the interval [0, 7] is divided into M subintervals [t,,—1, ],
m = 1,2,..., M of equal step size h = - by using the nodes t,, = mh [6]. The
main idea of the FMDTM is in the following. First, we apply the DTM to
over the interval [0, ¢1], we will obtain the following approximate solution:

K
2i(t) =Y aint", t€[0,t] (2.3)
n=0

using the initial conditions a:(lk) (0) = ¢;. For m > 2 and at each subinterval

[t—1,tm] we will use the initial conditions 2k (tm—1) = Igf)_l(tm—ﬂ and apply
k

the DTM to 1] over the interval [t;,—1, ], where ¢y in F'(k) = %[%@}t:to is

replaced by t,,_1. The process is repeated and generates a sequence of approximate

solutions x,(t),m = 1,2,..., M, for the solution z(t):

K
xm(t) = Z afmn(t - tm—l)nv te [tm7 tm—i—l] (24)
n=0

where N = KM. In fact the FMDTM assumes the following solution:

xl(t), t e [O,tl]

a(t) = :sz(t)’ Ll (2.5)

.Q?M(t), te [thlatM]
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The new algorithm, FMDTM, is simple for computational performance for all
values of h. It is easily observed that if the step size h = T, then the FMDTM
reduces to the classical DTM [0}, [7, 4].

2.1. FMDTM for Rossler System. Now, we take the system (1.1} into consid-
eration. According to the FMDTM, the series solution for Rossler system is given
by:

Yoo (X1(8), Ya(t), Z1(8))t" t € [0,14]

N _ n
(2(0),4(0). 2(1)) = :n:o(Xz(t%Yz(t)aZz(t))(t t1)",t € [t to]

2520 (Xar(8), Yar(t), Zas (£))(t — tar—1)",t € [tar—1, tad]
(2.6)

where X;(n), Y;(n) and Z;(n), for i = 1,2,.., M, satisfy the following recurrence
relations:

Xi(k+1) = (k; i (Ya(k) + Zi(k)) (2.7)

Vilk+1) = 5 K 151 (X0) + a¥i(h) (2.8)
k

Zlk+1) = +1 51O Zi0)X0) = eZi(h) + b5(4) (2.9)

1=0

such that X;(0) = z(0), Y1(0) = y(0), Z1(0) = 2(0) and X;(0) = X,;_1(0),
Y;(0) = Y;—1(0), Z;(0) = Z;—1(0), for ¢ = 2,3, ..., M. Numerical results are taken
using FMDTM like an analitical method with aim to show how FMDTM will
agree with FABM in the numerical approximation of the solutions of the system
[6]. FABM act like a predictor-corrector pair which represents an amalgamation
between fractional Adams Bashforth FAB and fractional Adams Moulton FAM
methods [7, 2], B].

3. ADAMS-BASHFORTH-MOULTON METHOD

We consider the initial value problem . We assume a solution of on
some interval [0, 7] to construct approximate solution values z; ~ z(j) at the grid
points t; = jh, (j =0,1,2,...,N) for h = % [3]. The initial value problem is
equivalent to the Volterra integral equation:

[vI=1 (k) t
= Lok 1 — )V (2 (7))dT
w0= X Gt g [ 0 G (31)
The main part of the algorithm for (FAB)
-1, .\ . J-1
. h h .
ol = Y Gihal ¢ o b - Hitkhal) 2

k=0 k=0
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where b[j — k] are the weights which depends only on the difference (j — k) because

of the convolution structure of by, ;.
Using FAB and FAM, the main part of the FABM of the algorithm is:

S WC LR R < WP
p= 2 Tt gy 2~ 7o)

s\ k v
ol = 30 Uall) s e () + (G~ 1

(= o D) FO.2f0]) + Y alj — K (kh, 2lk])

k=0

(3.4)

The corrector part of (2.2)) is denoted by z[j] with weight a[j — k] (3.4), where p

represents FAB, which in this case acts like a predictor [I} 2] [3].

3.1. FABM for Rossler System. In the case of fractional-order Rossler system

(1.1), the method will take the form:

Predictor of the algorithm:

Ju

[

pli) = 20+ s S Ob ylK] + 2[K)))
k 0
bl = 10+ T kzob[ '~ k) (alk] + ay[k)
rlj] = 20 Zbr (b+ alk][K] — c2[K])
Corrector of the algorithm:
oli] = 0+ Fry gy (—(alil + 1) + G = 1) -
(G — o= 1)) (0] + 20) + 3 alj — K(—(y[k] + 2 [K]))
k=1
W)= 30+ o (01 + gl + (G = 1) -
(= v — 1)7°)([0] + ay[0]) + 3 alj — K](xlk] + ay[k]))
k=1
2] = 20 + (b plilrlf] — erli]) + (G — 1" = (G — v — 1))
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-(b+ x[0]2[0] — cz[0]) + ia[j — k](b + z[k]z[k] — cz[k])) (3.10)
k=1

4. NUMERICAL RESULTS

The parameters of the fractional-order Rossler system are taken arbitrary, here
at particular values a = 0.1, b = 0.1, and ¢ = 14 (we note that the conclusions in
the further analysis are quite general and valid for other parameter values also).
We aim to show how FMDTM and FABM methods will agree with each other in
the numerical approximation of the solutions of the system. We take the same
initial conditions x(0) = 0, y(0) = 0 and z(0) = 0 in all the simulations. We
consider four different values of the fractional-orders within the interval (0,1],
that is v = 0.6, v = 0.8, v = 0.9 and v = 0.98.
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FIGURE 2. Time-series of system ([1.1) with v = 0.6, initial conditions
(z(0),y(0),2(0)) = (0,0,0), step size h = 0.001 and ¢ € [0,1] (FMDTM
- solid line, FABM -dashed line]. a)z(t); b)y(t); c)z(t)
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FIGURE 3. Time-series of system ([1.1) with v = 0.8, initial conditions
(z(0),y(0),2(0)) = (0,0,0), size is h = 0.001 and ¢ € [0,1] (FMDTM -
solid line, FABM -dashed line]. a)z(t); b)y(t); c)z(t)

5. CONCLUSIONS

In this paper, two different numerical approximation schemes (FMDTM and
FABM) have been applied to find the time-series solutions of the fractional-order
Rossler system. The Wolfram Mathemaica 11 software, was used to obtain and
approximate the results shown in this paper. We have aimed to quantify the dis-
tinction between the integration methods by depicting the time series for the same
system parameters and initial conditions, by varying the order of the fractional
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FIGURE 4. Time-series of system 1’ with v = 0.9, initial conditions
(z(0),y(0),2(0)) = (0,0,0), size is h = 0.001 and ¢ € [0,1] (FMDTM -
solid line, FABM -dashed line]. a)z(t); b)y(¢); c)z(¢)
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FIGURE 5. Time-series of system (1.1}, whith v = 0.98, initial condi-
tions (z(0),y(0),2(0)) = (0,0,0), step size is h = 0.001 and ¢ € [0, 1]
(FMDTM - solid line, FABM -dashed line]. a)x(t); b)y(t); c)z(t)

derivative v. The results show that FABM method generally differ from the time
series approximations obtained by FMDTM, except when v = 0.98.

We have shown numerically that this difference is less pronounced as the value of

the fractional-order becomes closer to one. The methods of numerical integration
are substantially different with respect to the speed of the numerical computation,
since FMDTM is using the time-series values of the previous step as an input
for computing the next values, whilst FABM requires a knowledge of the whole
history to compute the next step, and thus is much time-consuming with respect

to

il
2
3

[4

5

FMDTM.
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