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FURTHER GENERALIZATIONS OF MINKOWSKI

TYPE INEQUALITIES WITH EXTENDED

MITTAG-LEFFLER FUNCTION

MAJA ANDRI� 1, GHULAM FARID 2, JOSIP PE�ARI� 3,
AND MUHAMMAD USAMA SIDDIQUE 2

Abstract. The paper presents generalizations of Minkowski type integral in-
equalities for a generalized fractional integral operator containing an extended
Mittag-Le�er function in the kernel.

1. Introduction and preliminary results

This paper is a continuation of our work on Minkowski type inequalities, recently
given in the paper [2], where we proved the reverse fractional Minkowski integral
inequality using an extended Mittag-Le�er function with the corresponding frac-
tional integral operator, as well as several related Minkowski type inequalities. The
result of this paper can be applied to deduce already known fractional inequalities.

The Minkowski integral inequality is given for f, g ∈ Lp[a, b] and p ≥ 1 by(∫ b

a

(f(x) + g(x))pdx

) 1
p

≤

(∫ b

a

(f(x))pdx

) 1
p

+

(∫ b

a

(g(x))pdx

) 1
p

, (1.1)

while the Mittag-Le�er function Eρ is de�ned for z ∈ C and <(ρ) > 0 by the
power series using the gamma function Γ

Eρ(z) =

∞∑
n=0

zn

Γ(ρn+ 1)
. (1.2)

Our motivation for the research on Minkowski type integral inequalities and
reverse versions are the following inequalities from [3, 10]:

Theorem 1 ([3]). Let p ≥ 1 and let f, g ∈ Lp[a, b] be positive functions satisfying

0 < m ≤ f(x)
g(x) ≤M for x ∈ [a, b]. Then(∫ b

a

(f(x))pdx

) 1
p

+

(∫ b

a

(g(x))pdx

) 1
p
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≤ M(m+ 2) + 1

(m+ 1)(M + 1)

(∫ b

a

(f(x) + g(x))pdx

) 1
p

.

Theorem 2 ([10]). Let p ≥ 1 and let f, g ∈ Lp[a, b] be positive functions satisfying

0 < m ≤ f(x)
g(x) ≤M for x ∈ [a, b]. Then(∫ b

a

(f(x))pdx

) 2
p

+

(∫ b

a

(g(x))pdx

) 2
p

≥ M(m− 1) +m+ 1

M

(∫ b

a

(f(x))pdx

) 1
p
(∫ b

a

(g(x))pdx

) 1
p

.

The aim is to prove these kind of inequalities in the more general settings using
fractional calculus, a theory of di�erential and integral operators of non-integer
order (more on fractional calculus can be found in monographs [7, 9]). In recent
years considerable interest in this theory has been stimulated by the applications
that this calculus �nds in numerical analysis and di�erent areas of physics and
engineering. All forms of the fractional operators (meaning fractional integral and
fractional derivative) that have been studied extensively for their applications, in
a special case are reduced to the left-sided and the right-sided Riemann-Liouville

fractional integrals Jσa+f and Jσb−f of order σ de�ned as in [7, 9] for f ∈ L1[a, b]
by

Jσa+f(x) =
1

Γ(σ)

∫ x

a

(x− t)σ−1f(t) dt, x ∈ (a, b], (1.3)

Jσb−f(x) =
1

Γ(σ)

∫ b

x

(t− x)σ−1f(t) dt, x ∈ [a, b). (1.4)

Since the Mittag-Le�er function and its generalizations appear as a solution of
fractional order di�erential or integral equations, in [1] we presented more extended
and generalized version Eδ,c,v,rρ,σ,τ (z;u) as follows:

De�nition 1.1. Let ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0 with
u ≥ 0, r > 0 and 0 < v ≤ r + <(ρ). Then Eδ,c,v,rρ,σ,τ (z;u) is de�ned by

Eδ,c,v,rρ,σ,τ (z;u) =

∞∑
n=0

Bu(δ + nv, c− δ)
B(δ, c− δ)

(c)nv
Γ(ρn+ σ)

zn

(τ)nr
. (1.5)

Recall that (c)nv denotes the generalized Pochhammer symbol (c)nv = Γ(c+nv)
Γ(c)

and Bu is an extension of the beta function

Bu(x, y) =

∫ 1

0

tx−1(1− t)y−1e−
u

t(1−t) dt (<(x),<(y),<(u) > 0) .

As proved in [1], the series (1.5) is absolutely convergent for all values of z pro-
vided that v < r + <(ρ). Moreover, if v = r + <(ρ), then Eδ,c,v,rρ,σ,τ (z;u) converges

for |z|< rr <(ρ)<(ρ)

vv .
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Next is a corresponding generalized fractional integral operator (also de�ned in
[1]):

De�nition 1.2. Let w, ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0
with u ≥ 0, r > 0 and 0 < v ≤ r + <(ρ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the

generalized fractional integral operator εw,δ,c,v,ra+,ρ,σ,τ f is de�ned by(
εw,δ,c,v,ra+,ρ,σ,τ f

)
(x;u) =

∫ x

a

(x− t)σ−1Eδ,c,v,rρ,σ,τ (w(x− t)ρ;u)f(t)dt. (1.6)

Setting u = 0 and σ = τ = r = q = δ = 1 in De�nition 1.1, (1.5) reduces to
the Mittag-Le�er function (1.2), and setting u = ω = 0 in De�nition 1.2, (1.6)
reduces to the Riemann-Liouville fractional integral Jσa+f of order σ, as de�ned
in (1.3). For more details on this and how to deduce known generalizations of
Mittag-Le�er function and its fractional integral operator see [1].

Further generalization of the fractional integral operator we give in [5] as follows:

De�nition 1.3. Let w, σ, τ, δ, c ∈ C, <(σ),<(τ) > 0, <(c) > <(δ) > 0 with u ≥ 0,
ρ, r > 0 and 0 < v ≤ r+ρ. Let f ∈ L1[a, b], 0 < a < b <∞, be a positive function.

Let h : [a, b] → R be a di�erentiable function, strictly increasing. Also let φ
x be

an increasing function on [a,∞) and x ∈ [a, b]. Then the generalized fractional

integral operator φhF
w,δ,c,v,r
a+,ρ,σ,τ f is de�ned by(

φ
hF

w,δ,c,v,r
a+,ρ,σ,τ f

)
(x;u)

=

∫ x

a

φ(h(x)− h(t))

h(x)− h(t)
Eδ,c,v,rρ,σ,τ (w(h(x)− h(t))ρ;u)h′(t)f(t)dt.

In this paper, we will deal with a special case of the above operator, setting

φ(x) = xσ, σ > 0, in real domain. This operator we denote hΥw,δ,c,v,r
a+,ρ,σ,τ f and de�ne

as follows.

De�nition 1.4. Let w ∈ R, ρ, σ, τ, r > 0, c > δ > 0 with u ≥ 0 and 0 < v ≤ r+ρ.
Let f ∈ L1[a, b] be a positive function and h : [a, b] → R be a di�erentiable
function, strictly increasing. Then for x ∈ [a, b] the generalized fractional integral

operator hΥw,δ,c,v,r
a+,ρ,σ,τ f is de�ned by(

hΥw,δ,c,v,r
a+,ρ,σ,τ f

)
(x;u)

=

∫ x

a

(h(x)− h(t))σ−1Eδ,c,v,rρ,σ,τ (w(h(x)− h(t))ρ;u)h′(t)f(t)dt. (1.7)

If we set u = ω = 0 in this de�nition, then (1.7) reduces to the left-sided

Riemann-Liouville fractional integral of a function f with respect to another func-

tion h of order σ ([7, 9]):

Jσa+;hf(x) =
1

Γ(σ)

∫ x

a

(h(x)− h(t))σ−1h′(t)f(t) dt, x ∈ (a, b].
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The paper is organized in the following way: after this introductory section with
preliminary results, further generalizations of reverse Minkowski type integral in-
equalities for a generalized fractional integral operator

hΥw,δ,c,v,r
a+,ρ,σ,τ f containing an extended Mittag-Le�er function Eδ,c,v,rρ,σ,τ in the kernel

are given in Section 2. In Section 3 we prove some related fractional Minkowski
type integral inequalities. More similar results on the Minkowski type inequalities
using fractional operators can be seen in [2, 4, 6, 8, 11, 12, 13].

For the reader's convenience we will use a simpli�ed notation

EEE(z;u) := Eδ,c,v,rρ,σ,τ (z;u),

(hΥhΥhΥf)(x;u) :=
(
hΥw,δ,c,v,r

a+,ρ,σ,τ f
)

(x;u).

2. Further generalization of reverse Minkowski type inequalities

involving extended Mittag-Leffler function

To generalize Theorem 1 using fractional calculus, we supplement methods from
the paper by L. Bougo�a ([3]) with the necessary steps.

Theorem 3. Let w ∈ R, ρ, σ, τ, r > 0, c > δ > 0 with u ≥ 0 and 0 < v ≤
r + ρ. Let h : [a, b] → R be a di�erentiable, strictly increasing function and let

f, g, ϕ1, ϕ2 ∈ Lp[a, b] be positive functions satisfying

0 < ϕ1(x) ≤ f(x)

g(x)
≤ ϕ2(x), x ∈ [a, b].

Then for p ≥ 1 the following inequality holds

[(hΥhΥhΥfp)(x;u)]
1
p + [(hΥhΥhΥgp)(x;u)]

1
p

≤
[(

hΥhΥhΥ

(
ϕ2

1 + ϕ2

)p
(f + g)p

)
(x;u)

] 1
p

+

[(
hΥhΥhΥ

(
1

1 + ϕ1

)p
(f + g)p

)
(x;u)

] 1
p

. (2.1)

Proof. Let t ∈ [a, b]. From f(t)
g(t) ≤ ϕ2(t) we have

f(t) ≤ ϕ2(t)[f(t) + g(t)]− ϕ2(t)f(t),

and for p ≥ 1

(f(t))
p ≤

(
ϕ2(t)

1 + ϕ2(t)

)p
[f(t) + g(t)]

p
. (2.2)

Multiplying both sides of the above inequality by

(h(x)− h(t))
σ−1

EEE (w(h(x)− h(t))ρ;u)h′(t) (2.3)

and integrating on [a, x] with respect to the variable t, we obtain

(hΥhΥhΥfp) (x;u) ≤
(
hΥhΥhΥ

((
ϕ2

1 + ϕ2

)p
(f + g)p

))
(x;u).
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from which we get

[(hΥhΥhΥfp)(x;u)]
1
p ≤

[(
hΥhΥhΥ

((
ϕ2

1 + ϕ2

)p
(f + g)p

))
(x;u)

] 1
p

. (2.4)

Further, from f(t)
g(t) ≥ ϕ1(t) follows

g(t) ≤ 1

ϕ1(t)
[f(t) + g(t)]− 1

ϕ1(t)
g(t),

and if p ≥ 1, then

(g(t))p ≤
(

1

1 + ϕ1(t)

)p
[f(t) + g(t)]

p
. (2.5)

Similarly, if we multiply above inequality by (2.3) and integrate on [a, x], then we
get

(hΥhΥhΥgp) (x;u) ≤
(
hΥhΥhΥ

((
1

1 + ϕ1

)p
(f + g)p

))
(x;u)

and also

[(hΥhΥhΥgp) (x;u)]
1
p ≤

[(
hΥhΥhΥ

((
1

1 + ϕ1

)p
(f + g)p

))
(x;u)

] 1
p

. (2.6)

By adding (2.4) and (2.6), the resulting inequality (2.1) follows. �

Setting ϕ1 and ϕ2 to be constant functions, i.e. ϕ1(x) = m and ϕ2(x) = M for
all x ∈ [a, b], we obtain the following result.

Corollary 3.1. Let w ∈ R, ρ, σ, τ, r > 0, c > δ > 0 with u ≥ 0 and 0 < v ≤
r + ρ. Let h : [a, b] → R be a di�erentiable, strictly increasing function and let

f, g ∈ Lp[a, b] be positive functions satisfying

0 < m ≤ f(x)

g(x)
≤M, x ∈ [a, b]. (2.7)

Then for p ≥ 1 the following inequality holds

[(hΥhΥhΥfp)(x;u)]
1
p + [(hΥhΥhΥgp)(x;u)]

1
p

≤ c1 [(hΥhΥhΥ(f + g)p) (x;u)]
1
p ,

where

c1 =
M(m+ 2) + 1

(m+ 1)(M + 1)
. (2.8)

Remark 2.1: If the function h is the identity function, then we obtain an in-

equality for the generalized fractional operator εw,δ,c,v,ra+,ρ,σ,τ f from De�nition 1.2:[(
εw,δ,c,v,ra+,ρ,σ,τ f

p
)

(x;u)
] 1
p

+
[(
εw,δ,c,v,ra+,ρ,σ,τ g

p
)

(x;u)
] 1
p

≤ c1

[(
εw,δ,c,v,ra+,ρ,σ,τ (f + g)p

)
(x;u)

] 1
p

,
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where c1 is de�ned by (2.8).
This inequality is given in [2, Theorem 2.1].

Next theorem is a fractional generalization of Theorem 2. It follows by the use
of the Minkowski integral inequality (1.1).

Theorem 4. Suppose the assumptions of Theorem 3 hold. Then

[(hΥhΥhΥfp) (x;u)]
2
p + [(hΥhΥhΥgp) (x;u)]

2
p

≥
[(

hΥhΥhΥ

(
1 + ϕ2

ϕ2

)p
fp
)

(x;u)

] 1
p

[(hΥhΥhΥ (1 + ϕ1)
p
gp) (x;u)]

1
p

−2 [(hΥhΥhΥfp) (x;u)]
1
p [(hΥhΥhΥgp) (x;u)]

1
p . (2.9)

Proof. For p ≥ 1 and t ∈ [a, b], inequalities (2.2) and (2.5) can also be written as(
1 + ϕ2(t)

ϕ2(t)

)p
((f(t))

p ≤ [f(t) + g(t)]
p

and

(1 + ϕ1(t))p(g(t))p ≤ [f(t) + g(t)]
p
.

If we multiply both sides of each inequality by (2.3), integrate on [a, x] with respect
to the variable t and use power to the 1

p , then we obtain[(
hΥhΥhΥ

((
1 + ϕ2

ϕ2

)p
fp
))

(x;u)

] 1
p

≤ [(hΥhΥhΥ(f + g)p) (x;u)]
1
p (2.10)

and

[(hΥhΥhΥ ((1 + ϕ1)
p
gp)) (x;u)]

1
p ≤ [(hΥhΥhΥ(f + g)p) (x;u)]

1
p . (2.11)

Taking the product of the inequalities (2.10) and (2.11) we obtain[(
hΥhΥhΥ

((
1 + ϕ2

ϕ2

)p
fp
))

(x;u)

] 1
p

[(hΥhΥhΥ ((1 + ϕ1)
p
gp)) (x;u)]

1
p

≤ [(hΥhΥhΥ(f + g)p) (x;u)]
2
p .

If we apply Minkowski's inequality on right hand side, we get[(
hΥhΥhΥ

((
1 + ϕ2

ϕ2

)p
fp
))

(x;u)

] 1
p

[(hΥhΥhΥ ((1 + ϕ1)
p
gp)) (x;u)]

1
p

≤
[
((hΥhΥhΥfp) (x;u))

1
p + ((hΥhΥhΥgp) (x;u))

1
p

]2
.

From this we can easily obtain the inequality (2.9). �

If ϕ1(x) = m and ϕ2(x) = M for all x ∈ [a, b], then the next inequality follows.

Corollary 4.1. Suppose the assumptions of Corollary 3.1 hold. Then

[(hΥhΥhΥfp) (x;u)]
2
p + [(hΥhΥhΥgp) (x;u)]

2
p

≥ c2 [(hΥhΥhΥfp) (x;u)]
1
p [(hΥhΥhΥgp) (x;u)]

1
p ,
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where

c2 =
M(m− 1) +m+ 1

M
.

Remark 2.2: If the function h is the identity function, then we obtain [2, Theorem

2.2], an inequality for the generalized fractional operator εw,δ,c,v,ra+,ρ,σ,τ f .

3. Related fractional Minkowski type integral inequalities

We continue with the generalizations of the reverse Minkowski type integral
inequalities. Starting conditions that we will need in this section are those given

in Corollary 3.1, where we have 0 < m ≤ f(x)
g(x) ≤M .

Theorem 5. Suppose that assumptions of Corollary 3.1 hold. Let p, q > 1 with
1
p + 1

q = 1. Then

[(hΥhΥhΥf) (x;u)]
1
p [(hΥhΥhΥg) (x;u)]

1
q ≤

(
M

m

) 1
pq (

hΥhΥhΥ
(
f

1
p g

1
q

))
(x;u). (3.1)

Proof. Let t ∈ [a, b]. From f(t)
g(t) ≤M we obtain

(f(t))
1
q ≤M

1
q (g(t))

1
q ,

and after multiplication by (f(t))
1
p we get

f(t) ≤M
1
q (f(t))

1
p (g(t))

1
q .

If we multiply both sides of the above inequality by (2.3), integrate on [a, x] with
respect to the variable t and use power to the 1

p , then we obtain

[(hΥhΥhΥf) (x;u)]
1
p ≤M

1
pq

[(
hΥhΥhΥ
(
f

1
p g

1
q

))
(x;u)

] 1
p

. (3.2)

Next from the lower bound m ≤ f(t)
g(t) we have

g(t) ≤ m−
1
p (f(t))

1
p (g(t))

1
q .

Again, if we multiply both sides of the above inequality by (2.3), integrate on [a, x]
with respect to the variable t and use power to the 1

p , then we get

[(hΥhΥhΥg) (x;u)]
1
q ≤ m−

1
pq

[(
hΥhΥhΥ
(
f

1
p g

1
q

))
(x;u)

] 1
q

. (3.3)

The inequality (3.1) now follows from the product of inequalities (3.2) and (3.3).
�

In the next theorem we will need the following elementary inequality for x, y ≥ 0
and p > 1:

(x+ y)p ≤ 2p−1(xp + yp), (3.4)

along with the well known Young's inequality for x, y ≥ 0 and p, q > 1 such that
1
p + 1

q = 1:

xy ≤ xp

p
+
yq

q
. (3.5)
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Theorem 6. Suppose that assumptions of Corollary 3.1 hold. Let p, q > 1 with
1
p + 1

q = 1. Then

(hΥhΥhΥ(fg)) (x;u) ≤ 2p−1

p

(
M

M + 1

)p
(hΥhΥhΥ (fp + gp)) (x;u)

+
2q−1

q

(
1

m+ 1

)q
(hΥhΥhΥ (fq + gq)) (x;u). (3.6)

Proof. Let t ∈ [a, b], p, q > 1 and 1
p + 1

q = 1. From f(t)
g(t) ≤M we get

(f(t))p ≤
(

M

M + 1

)p
[f(t) + g(t)]

p
.

If we multiply both sides of the above inequality by (2.3) and integrate on [a, x]
with respect to the variable t, then we obtain

1

p
(hΥhΥhΥfp) (x;u) ≤ 1

p

(
M

M + 1

)p
(hΥhΥhΥ(f + g)p) (x;u) (3.7)

Next from m ≤ f(t)
g(t) we obtain

(g(t))q ≤
(

1

m+ 1

)q
[f(t) + g(t)]

q
.

Again, if we multiply both sides of the above inequality by (2.3) and integrate on
[a, x] with respect to the variable t, then we get

1

q
(hΥhΥhΥgq) (x;u) ≤ 1

q

(
1

m+ 1

)q
(hΥhΥhΥ(f + g)q) (x;u). (3.8)

Using Young's inequality (3.5) we have

f(t)g(t) ≤ (f(t))p

p
+

(g(t))q

q
.

Multiplying both sides of the above inequality by (2.3) and integrating on [a, x]
we get

(hΥhΥhΥ(fg)) (x;u) ≤ 1

p
(hΥhΥhΥfp) (x;u) +

1

q
(hΥhΥhΥgq) (x;u). (3.9)

From (3.7), (3.8) and (3.9) we obtain

(hΥhΥhΥ(fg)) (x;u) ≤ 1

p

(
M

M + 1

)p
(hΥhΥhΥ(f + g)p) (x;u)

+
1

q

(
1

m+ 1

)q
(hΥhΥhΥ(f + g)q) (x;u). (3.10)

Using elementary inequality (3.4) we obtain

(hΥhΥhΥ (f + g)
p
) (x;u) ≤ 2p−1 (hΥhΥhΥ (fp + gp)) (x;u) (3.11)

and

(hΥhΥhΥ(f + g)q) (x;u) ≤ 2q−1 (hΥhΥhΥ (fq + gq)) (x;u). (3.12)
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Hence, from (3.10), (3.11) and (3.12) we obtain (3.6). �

Next theorem needs a simple application of the given condition (2.7).

Theorem 7. Suppose that assumptions of Corollary 3.1 hold. Then

1

M
(hΥhΥhΥ(fg)) (x;u) ≤ 1

(m+ 1)(M + 1)

(
hΥhΥhΥ(f + g)2

)
(x;u)

≤ 1

m
(hΥhΥhΥ(fg)) (x;u). (3.13)

Proof. From 0 < m ≤ f(t)
g(t) ≤M and 1

M ≤
g(t)
f(t) ≤

1
m we obtain

(m+ 1)g(t) ≤ f(t) + g(t) ≤ (M + 1)g(t) (3.14)

and (
M + 1

M

)
f(t) ≤ f(t) + g(t) ≤

(
m+ 1

m

)
f(t). (3.15)

Multiplying inequalities (3.14) and (3.15) we get

1

M
f(t)g(t) ≤ (f(t) + g(t))

2

(M + 1)(m+ 1)
≤ 1

m
f(t)g(t).

Inequalities (3.13) now follow if we multiply the above by (2.3) and integrate on
[a, x] with respect to the variable t. �

In the last theorem we add a positive parameter ϑ such that ϑ < m, i.e.

0 < ϑ < m ≤ f(x)

g(x)
≤M, x ∈ [a, b].

Theorem 8. Suppose that assumptions of Corollary 3.1 hold. Let ϑ > 0 be such

that ϑ < m in (2.7). Then

M + 1

M − ϑ

(
hΥhΥhΥ(f − ϑg)

1
p

)
(x;u)

≤ [(hΥhΥhΥfp) (x;u)]
1
p + [(hΥhΥhΥgp) (x;u)]

1
p

≤ m+ 1

m− ϑ

(
hΥhΥhΥ(f − ϑg)

1
p

)
(x;u). (3.16)

Proof. From the given condition 0 < ϑ < m ≤M , we have

m−Mϑ ≤M −mϑ,
from which follow

M + 1

M − ϑ
≤ m+ 1

m− ϑ
,

m− ϑ ≤ f(t)− ϑg(t)

g(t)
≤M − ϑ

and
[f(t)− ϑg(t)]

p

(M − ϑ)p
≤ (g(t))p ≤ [f(t)− ϑg(t)]

p

(m− ϑ)p
.
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If we multiply above inequalities by (2.3), integrate on [a, x] with respect to the
variable t and use power to the 1

p , then we get

1

M − ϑ
[(hΥhΥhΥ(f − ϑg)p) (x;u)]

1
p

≤ [(hΥhΥhΥgp) (x;u)]
1
p

≤ 1

m− ϑ
[(hΥhΥhΥ(f − ϑg)p) (x;u)]

1
p . (3.17)

Further, from 1
M ≤

g(t)
f(t) ≤

1
m we get

m− ϑ
m

≤ f(t)− ϑg(t)

f(t)
≤ M − ϑ

M
,

from which we have

Mp [f(t)− ϑg(t)]
p

(M − ϑ)p
≤ (f(t))p ≤ mp [f(t)− ϑg(t)]

p

(m− ϑ)p
.

Again, multiplying above inequalities by (2.3), integrating on [a, x] and using power
to the 1

p , we obtain

M

M − ϑ
[(hΥhΥhΥ(f − ϑg)p) (x;u)]

1
p

≤ [(hΥhΥhΥfp) (x;u)]
1
p

≤ m

m− ϑ
[(hΥhΥhΥ(f − ϑg)p) (x;u)]

1
p . (3.18)

By adding the inequalities (3.17) and (3.18), we get (3.16). �

Remark 3.1: If in the obtained results of this section we use the identity func-
tion for the function h, then we obtain Theorem 3.1-Theorem 3.4 from [2], i.e.

inequalities for the generalized fractional operator εw,δ,c,v,ra+,ρ,σ,τ f from De�nition 1.2.

At the end we emphasize that the right-sided versions of all inequalities in this
paper can be established using(

hΥw,δ,c,v,r
b−,ρ,σ,τ f

)
(x;u)

=

∫ b

x

(h(t)− h(x))σ−1Eδ,c,v,rρ,σ,τ (w(h(t)− h(x))ρ;u)h′(t)f(t)dt.

and proved analogously.
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