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FURTHER GENERALIZATIONS OF MINKOWSKI
TYPE INEQUALITIES WITH EXTENDED
MITTAG-LEFFLER FUNCTION

MAJA ANDRIC !, GHULAM FARID 2, JOSIP PECARIC 3,
AND MUHAMMAD USAMA SIDDIQUE 2

Abstract. The paper presents generalizations of Minkowski type integral in-
equalities for a generalized fractional integral operator containing an extended
Mittag-Leffler function in the kernel.

1. INTRODUCTION AND PRELIMINARY RESULTS

This paper is a continuation of our work on Minkowski type inequalities, recently
given in the paper [2], where we proved the reverse fractional Minkowski integral
inequality using an extended Mittag-Leffler function with the corresponding frac-
tional integral operator, as well as several related Minkowski type inequalities. The
result of this paper can be applied to deduce already known fractional inequalities.

The Minkowski integral inequality is given for f,g € L,[a,b] and p > 1 by

. L - :
( / (f(x)+g(x))pdw> << / (f(:c))”dw> +< / <g<x)>pdx> R

while the Mittag-Leffler function E, is defined for z € C and R(p) > 0 by the
power series using the gamma function I

E,(z) = nz:% ﬁ. (1.2)

Our motivation for the research on Minkowski type integral inequalities and
reverse versions are the following inequalities from [3] 10]:
Theorem 1 ([3]). Let p > 1 and let f,g € Lyla,b] be positive functions satisfying

0<m< ;Eg < M forz € [a,b]. Then

b(f(x))pdw %+ b(g(x))pdx ’
([ora) +( [oors)
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b }
m< / (f(a:>+g(a:)>”dx> :

Theorem 2 ([10]). Let p > 1 and let f, g € Lyla, b] be positive functions satisfying

0<m< J;Ei; < M for x € [a,b]. Then

b » b 5
( / (f(ar))pda:> + < / (g(@)%)
_ m b % b %
> Mm-Ux “(/a (f(:v))pdx> (/ (g(x))pdx> |

The aim is to prove these kind of inequalities in the more general settings using
fractional calculus, a theory of differential and integral operators of non-integer
order (more on fractional calculus can be found in monographs [7, 9]). In recent
years considerable interest in this theory has been stimulated by the applications
that this calculus finds in numerical analysis and different areas of physics and
engineering. All forms of the fractional operators (meaning fractional integral and
fractional derivative) that have been studied extensively for their applications, in
a special case are reduced to the left-sided and the right-sided Riemann-Liouville
fractional integrals JJ, f and JJ_f of order o defined as in |7, 9] for f € L;[a,b]
by

@) = o /j(mt)"lf(t)dt, z € (., (13)
1 b
Ji_f(z) = @/(t—gc)"_lf(t)dt7 x € [a,b). (1.4)

Since the Mittag-Lefller function and its generalizations appear as a solution of
fractional order differential or integral equations, in [I] we presented more extended
and generalized version Eg:gvf;”(z; u) as follows:

Definition 1.1. Let p,0,7,d,c € C, R(p), R(0)

yR(7) > 0, R(e) > R(0) > 0 with
u>0,7>0and 0 <v <7+ R(p). Then ESS2"(

z;u) is defined by

(oo}
Bu(0 +nv,c—0)  (¢)nw z"
Eé,c,v,r . — l . 1.5
DO, T (z5u) nz:;) B(6,c — 0) T(pn+ o) (T)nr (1.5)
Recall that (¢),, denotes the generalized Pochhammer symbol (¢),, = F(;(+;)w)

and B, is an extension of the beta function
1
Bu.(z,y) :/ 1=t e T dt (R(x), R(y), R(u) > 0).
0

As proved in [1, the series (1.5) is absolutely convergent for all values of z pro-
vided that v < r + R(p). Moreover, if v = r 4+ R(p), then E;j:g’f;”(z; u) converges
r” R(p)*

Y

for |z|<
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Next is a corresponding generalized fractional integral operator (also defined in
[1):

Definition 1.2. Let w,p,0,7,d,¢c € C, R(p), R(0),R(7) > 0, R(c) > N() > 0
withu >0,r>0and 0 <v <r+R(p). Let f € L1]a,b] and = € [a,b]. Then the

generalized fractional integral operator 62”;6’:’5’: f is defined by

(2 r) (wsw) = / (v = )7V ES (w(z — )5 u) f(H)dt. (1.6)

Setting u = 0 and ¢ = 7 =r = ¢ = § = 1 in Definition reduces to
the Mittag-Lefler function , and setting v = w = 0 in Definition
reduces to the Riemann-Liouville fractional integral J7, f of order o, as defined
in (.3). For more details on this and how to deduce known generalizations of
Mittag-Leffler function and its fractional integral operator see [I.

Further generalization of the fractional integral operator we give in [5] as follows:

Definition 1.3. Let w,0,7,0,c € C, R(o),R(7) > 0, R(c) > R(J) > 0 with u > 0,
py,r>0and 0 <v <r+p. Let f € L1]a,b], 0 < a < b < o0, be a positive function.
Let h : [a,b] — R be a differentiable function, strictly increasing. Also let % be
an increasing function on [a,00) and x € [a,b]. Then the generalized fractional
integral operator wa"S’c’v’rf is defined by

at,p,0,7
w,d,¢,v,T
(Z)Faﬁ-,p,g;r f) (75 u)
* $(hlx) —h(D) s ,
- s Epoy (w(h(x) = h(t))?; ) () f(t)dt.
| B w(ha) — A (1)
In this paper, we will deal with a special case of the above operator, setting

¢(x) =27, 0 > 0, in real domain. This operator we denote hT;”;’f’;”;,’: f and define
as follows.

Definition 1.4. Let w € R, p,o,7,r >0,¢>d >0withu>0and 0 <v <r+p.
Let f € Li[a,b] be a positive function and h : [a,b] — R be a differentiable
function, strictly increasing. Then for x € [a,b] the generalized fractional integral
operator , YV;>¢" f is defined by

(w2 ) (i)
= [ bl = ) B (whla) — ROV (OO (0.7)

If we set w = w = 0 in this definition, then (1.7) reduces to the left-sided
Riemann-Liouville fractional integral of a function f with respect to another func-
tion h of order o ([7,9]):

1

Jg+;hf(33) = m

/ h(@) = BT W F() dt, 3 € (ab].
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The paper is organized in the following way: after this introductory section with
preliminary results, further generalizations of reverse Minkowski type integral in-

equalities for a generalized fractional integral operator
hT:f;;’:’: f containing an extended Mittag-Leffler function ES¢%" in the kernel

are given in Section 2. In Section 3 we prove some related fractional Minkowski
type integral inequalities. More similar results on the Minkowski type inequalities
using fractional operators can be seen in [2] [} [6], 8, 111 12 13].

For the reader’s convenience we will use a simplified notation
E(z;u) = E%%%"(zu),

p,0,T
WD (@) = (WO F) (i),

2. FURTHER GENERALIZATION OF REVERSE MINKOWSKI TYPE INEQUALITIES
INVOLVING EXTENDED MITTAG-LEFFLER FUNCTION

To generalize Theorem [TJusing fractional calculus, we supplement methods from
the paper by L. Bougoffa ([3]) with the necessary steps.

Theorem 3. Let w € R, p,o,7,r >0, ¢ > 3§ >0 withu >0 and 0 < v <
r+p. Let h: [a,b] — R be a differentiable, strictly increasing function and let
f.9,01,92 € Lyla,b] be positive functions satisfying

o<wmws§QSwmm z € [ab].

Then for p > 1 the following inequality holds

1

[((RYLfP) (@5 u)]7 + [(nLg") (25 u)]

el s
(e () wror) @l (1)

Proof. Let t € [a,b]. From % ©2(t) we have

F@) < a(Of (1) + 9()] — @2 (D) (2),

s =

and for p > 1
sy < (;205) ro+sor- (22
Multiplying both sides of the above inequality by
(h(x) = ()" E (w(h(x) = h(t))"; u) I (1) (2.3)

and integrating on [a, 2] with respect to the variable ¢, we obtain

wrm < (5 (($2) 0 +ar) )
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from which we get

et < [ ((22) 0+or) )] e

Further, from £ Eg > 1 (t) follows

1 1
and if p > 1, then
p 1 g

007 < (1o ) U0 +a) 25)
Similarly, if we multiply above inequality by and integrate on [a, ], then we
get

P
wr) o < (o0 () U+or)) @

and also

1 1 P v
P » < p : . .
[(WYg") (25 u)] < [(hT <(1+(p1) (f+9) )> (fc,U)} (2.6)
By adding (2.4) and (2.6)), the resulting inequality (2.1) follows. O

Setting ¢1 and @2 to be constant functions, i.e. p1(x) = m and ps(z) = M for
all x € [a,b], we obtain the following result.

Corollary 3.1. Let w € R, p,o,7,7 > 0, ¢ > 6 >0 withu > 0 and 0 < v <
r+p. Let h: [a,b] = R be a differentiable, strictly increasing function and let
f.g9 € Lpla, b be positive functions satisfying

f(z)
g(x)
Then for p > 1 the following inequality holds
(L) (@5 w)]? + [(hTg") (i u)]?
< alwY(f+9)") (mu)]r,

0<m< <M, zé€lab]. (2.7)

where
M(m+2)+1

(m+1)(M+1)

Remark 2.1: If the function h is the identity function, then we obtain an in-
equality for the generalized fractional operator ;""" f from Definition

at,p,o,1

1 1
w,d,c,v,T P w,0,¢,v,T . P
(et ) (@w)] " + [ (2sre?) (sw)

1

< a [(5;U+6pc;j:(f+g) )(zau):| ",

(2.8)

c1 =
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where ¢; is defined by ({2.8]).
This inequality is given in [2, Theorem 2.1].

Next theorem is a fractional generalization of Theorem [2} It follows by the use
of the Minkowski integral inequality (1.1)).

Theorem 4. Suppose the assumptions of Theorem[3 hold. Then
(XS7) (] + [6Tg") (i)
> [ (22) 7)) o] 6T 0+ 009 @)t
~2[(WYf7) (w3 )]7 [(4Lg") (i )] (29)
Proof. For p > 1 and t € [a,b], inequalities and can also be written as

1+‘P2(t) P P P
(FE20) oy <uo -+ ool

and

L+ er(®)P(g(t)” < [f(t) +9(t)]" -

If we multiply both sides of each inequality by (2.3)), integrate on [a, ] with respect
to the variable ¢ and use power to the %, then we obtain

(e (& “”2)p ) @) 6T+ ) ) (2.10)

P2
and
(WY (14 ¢1)" ¢") (@ w)]” < [WX(f +9)?) (zw)]7 . (2.11)
Taking the product of the inequalities and we obtain
1+ ¢2\” , 1
(r((52) #) wo] 6ra+are) wop
< (WY (f +9)") (w5 w)]?
If we apply Minkowski’s inequality on right hand side, we get
14+ ¢2\" ’ 1
(r((22) r) @] Gra+are) wop
1 172
< [(X ") (@iu)? + (X" (50))7 |
From this we can easily obtain the inequality . O

If 1(z) = m and pa(z) = M for all x € [a, ], then the next inequality follows.
Corollary 4.1. Suppose the assumptions of Corollary[3.1] hold. Then
(67 (@ w)]? + (Y (w5u)]?
> oW @)l (W) (w7
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where

Mm—-1)+m+1
i .
Remark 2.2: If the function & is the identity function, then we obtain [2, Theorem

2.2|, an inequality for the generalized fractional operator aff{fé’i f

Cy =

3. RELATED FRACTIONAL MINKOWSKI TYPE INTEGRAL INEQUALITIES

We continue with the generalizations of the reverse Minkowski type integral
inequalities. Starting conditions that we will need in this section are those given

in Corollary where we have 0 < m < ggig <M.

Theorem 5. Suppose that assumptions of Corollary [3.1] hold. Let p,q > 1 with

% + % =1. Then
< (fﬁ) (T (Fi07)) @u) D)

Proof. Let t € [a,b]. From % < M we obtain

(f(t)7 < M3 (g(t))7,

and after multiplication by (f(t))? we get

1 1 1
ft) < Ma(f(t)? (g(t)7.

If we multiply both sides of the above inequality by (2.3), integrate on [a, 2] with

respect to the variable ¢t and use power to the %, then we obtain

Q=

(WY F) (2:0)]7 (4L g) (3 )]

(W) ()b < M [(0E (Fhgh)) @) (32)

Next from the lower bound m < % we have

_1 1 1
g(t) <m= 7 (f(t)¥ (g(t))7.
Again, if we multiply both sides of the above inequality by (2.3)), integrate on [a, x|
with respect to the variable ¢ and use power to the %, then we get

1

1 _ 1 11 q
[(65L) (zw)] 7 <m™ 7 [(wT (£797)) (@iw)] " (3.3)
The inequality (3.1) now follows from the product of inequalities (3.2)) and (3.3).
O

In the next theorem we will need the following elementary inequality for x,y > 0
and p > 1:

(z +y)P <2071 (aP 4+ 4P), (3.4)
along with the well known Young’s inequality for z,y > 0 and p,q > 1 such that
1417
pa » .

<=+ L (3.5)
p q
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Theorem 6. Suppose that assumptions of Corollary [3.] hold. Let p,q > 1 with
% + % =1. Then

(wY(f9)) (z5u) < 2p‘1< =

—(55) @

2171 1 ! q q .
I () 6Yu e . 69

Proof. Let t € [a,b], p,g > 1 and %—i—%:l. From % < M we get

vy < (37) U0 +g07.

If we multiply both sides of the above inequality by (2.3) and integrate on [a, x|
with respect to the variable ¢, then we obtain

1 . 1 M \* Py
Lm0 < (3 ) 610+ 97 @) (3.7

Next from m < % we obtain

1 q
)< | —— t 0.
(00" < (27 ) U0 + a0
Again, if we multiply both sides of the above inequality by (2.3]) and integrate on
[a, z] with respect to the variable ¢, then we get
1 1 1 g
= wYg?) (yu) < - | —— T ) (x; u). 3.8
S0 @ <3 (o) X0 () ()
Using Young’s inequality (3.5) we have
f@)r | (g(t)?
f0otn < L0 )"
p q
Multiplying both sides of the above inequality by (2.3) and integrating on [a, x|
we get

urqmwmms%urﬁxxm+§urfﬂam. (3.9)
From , and we obtain

WX ) < 3 (G ) WO+ i)

+1<1>thU+yVN$U) (3.10)

qg \m+1
Using elementary inequality (3.4) we obtain
(WY (f +9)") (z3u) < 227H (WY (7 + g7)) (25u) (3.11)
and

WY (f +9)9) (w5u) <2971 (WY (f14 g) (z;u). (3.12)
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Hence, from (3.10)), (3.11) and (3.12)) we obtain (3.6). O

Next theorem needs a simple application of the given condition (2.7]).
Theorem 7. Suppose that assumptions of Corollary[3.1] hold. Then

1 1 o
M (WY (f9)) (x5u) < m (hT(f +9) ) (w5 u)
< = WX(9)) (). (313)
Proof. F‘r0m0<m§%§Mandﬁ§%§%weobtam
(m+1)g(t) < f(t) +9(t) < (M + 1)g(t) (3.14)
and
(5rt) 10 < s+ < (") s (3.19

Multiplying inequalities and we get
1 (f@O)+gt)* _ 1
Mf(t)g(t) < m < %f(t)g(t)

Inequalities ([3.13]) now follow if we multiply the above by (2.3) and integrate on
[a, z] with respect to the variable ¢. O

In the last theorem we add a positive parameter 9 such that ¥ < m, i.e.

O<ﬂ<m§M§M, x € [a,b].
g(x)
Theorem 8. Suppose that assumptions of Corollary[3.1] hold. Let ¥ > 0 be such
that 9 < m in (2.7). Then

]\]\/‘{4__119 (hT(f - 199)%) (w5 u)

< [WYSP) (30)]7 + [(wY) (5 0)]
<

=

:nw_r; (hT(f - 199)%) (z50). (3.16)

Proof. From the given condition 0 < ¥ < m < M, we have
m— M9 < M —mid,

from which follow

M—-9 = m — 3’
m— < f(t) —Jg(?) <M
g(t)
and . .
10 =000 _ o 110)—90(0)
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If we multiply above inequalities by (2.3), integrate on [a, ] with respect to the
variable t and use power to the %, then we get

1
M —

=

(WY (f —D9)") (5 u)]

(597 (3 )]
1

—— (WY (S = 99)") (a3 u)]7 . (3.17)

IN
53

IA

< g(t)

Further, from 0)

IA

L we get

m—1v9 _ f(t)—vg(t) M-
m f @) - M

L
M

from which we have

MP[f(t) = 9g()]"
(M — )

mP [f(t) — 9g(t)]”
(m — )P '

Again, multiplying above inequalities by (2.3)), integrating on [a, z] and using power
to the %, we obtain

<(f@®)F <

M 1
5 (WY (f — 99)") (w1 w)]?
< [WYSP) (2iu)]?
< T (WY~ 9g)) ()] (3.18)
By adding the inequalities and , we get . O

Remark 3.1: If in the obtained results of this section we use the identity func-
tion for the function h, then we obtain Theorem 3.1-Theorem 3.4 from [2], i.e.

inequalities for the generalized fractional operator s:lufp(::: f from Definition

At the end we emphasize that the right-sided versions of all inequalities in this
paper can be established using

(nTy%er ) ()
b
= [l = @) B (wlbt) ~ ho)P sk (0 )t

and proved analogously.
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