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SOME NEW INTEGRAL INEQUALITIES
FOR p—~CONVEX FUNCTIONS

ARTION KASHURI !, MUHAMMAD AAMIR ALI 2, AND MUJAHID ABBAS 3

Abstract. The aim of this paper is to generalize the results in [I0] using
the class of p—convex functions. Some special cases are deduced from main
results. Applying our ideas and techniques, new interesting inequalities can
be obtained in a similar way for different class of functions and operators.

1. INTRODUCTION AND PRELIMINARIES

The class of convex functions is well known in the literature and is defined in the
following way:

Definition 1.1. Let I be an interval in R. A function f : I — R, is said to be
convez on I, if the inequality

flru+ (L =)v) <vf(u) + (1 =7)f(v) (L.1)
holds for all u,v € I and ~y € [0, 1]. Also, we say that f is concave, if the inequality
n holds in the reverse direction.

Theory of convex functions and their variant forms is used to study a wide class of
problems that arise in various branches of pure and applied sciences. This theory
provides us with a natural, unified and general framework for solving a wide class
of optimization problems.

The following inequality, named Hermite-Hadamard inequality, is one of the most
famous inequalities in the literature for convex functions.

Theorem 1. Let f: I C R — R be a convex function and u,v € I with u < v.
Then the following inequality holds:

f(“‘Q“’)_U_u/f Vo < (Hf() (1.2)

This inequality is also known as trapezium mequaltty.
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The trapezium inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. Authors of recent decades have
studied in the premises of newly invented definitions due to motivation of
convex function. For applications, generalizations and other aspects of convex
functions, Hermite-Hadamard’s inequality and their variant forms, see the refer-
ences [I]-[I0].

The motivation of this paper is not only the generalization of the known results
by Wu et al. in [I0] but using our new ideas and techniques we can find some new
interesting results for different operators and classes of functions as well. About
their applications this will be investigate in our next paper.

Now, let us recall the following useful definitions.

Definition 1.2. A set S C R is said to be convez, if (1 —y)u+~yv €S for every
u,v €S and v € [0, 1].

Recently, Wu et al. [10] introduced the following new classes of p—convex sets and
p—convex functions.

Definition 1.3. A set S C R is said to be p—convex with respect to strictly mono-
tonic continuous function p, if

My (u,0) = p~ (1= 7)p(u) +vp(v)) €S, Yu,v €S, v€[0,1].

Definition 1.4. A function S C R is said to be p—convex with respect to strictly
monotonic continuous function p, if

/ (M[p](uav)) < (1 - V)f(u) +’yf(’U), Vu,v €S, 7€ [Oﬂ 1]

Note that the function f is called strictly p—convex on S if the above inequality
is true as a strict inequality for each distinct v and v in S and for each v € (0, 1).
The function f is called p—concave (strictly p—concave) on S, if (—f) is p—convex
(strictly p—convex) on S.

The main objective of this article is to generalize the results by Wu et al. in
[10] using the class of p—convex functions. We shall also discuss some of its special
cases. At the end, a briefly conclusion will be given.

2. MAIN RESULTS

Theorem 2. Suppose that f : I — R is an integrable p—convezr function with
respect to the function p. Then for a > 0, the following double integral inequalities

hold:
e (57) < s

<[ [ 0@ = o)™ s e+ [ (o) = o)™ S0 )]
_ W+ f)

< 1 1)
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Proof. Since f is a p—convex function, we have

(o (P < S S0 22)

Substituting & = p~! (1 - 7)p(u) +7p(v)) and y = p~! (vp(u) + (1 = 7)p(v)) in

B2 v we ( <<>+<>>>
o (B

F (o7 (L =7)p(w) +vp(v))) + f (o7 (vp(uw) + (1 = 7)p(v))) 2.3)
v . .

Multiplying both sides of (2.3) with v*~! and integrating with respect to v on

[0,1], we obtain
[ G () o

- /1 et [f (P~ (A =)p(u) +tp(v))) ;r St (tp(u) + (1 - v)p(v)))]d%
0

e (57)) < s

X {/u“ (p(u) — P(u))”‘—l fuw)p' (u)dx + /: (p() p(u))a_l f(U)p’(u)dx}.

So, the left-hand side of (2.1) is proved. Similarly, since f is a p—convex function,
we have

<

Hence

F ™ (@ =)o) +7p(v)) < (L =) f(u) +7f(v) (2.4)
and

Fo7t (vp(w) + (1 =7)p(v))) < 7vfu) + (1 =) f(v). (2.5)
Multiplying both sides of and with v*~! and integrating with respect
to v on [0, 1], we get

/o Y (07 = )p(u) +90(0)) + (07" (vp(w) + (1= 7)p(v))) Jdy

< / VoL f () + f0))dr.

Hence
«

2 (p(v) = p(u)*

<[ [ ot = o)™ s + [ (o) = o)™ s ()]
 f) 10
The proof of Theorem [2]is completed. O

Corollary 2.1. Taking o =1 in Theorem[d, we get ([10], Theorem 3.1).
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Theorem 3. Suppose that f : I — R is an integrable p—convez function with
respect to the function p. Then for a > 0, the following double integral inequalities
hold:

G /U (p(x) = p(w))* " (p(v) = p(2)) f(2)p (x)dx

2/) ' z) — p(w)* " fz)p (z)dx
b [ o) = o) 1@

1 v a—1 ;2 /

< e [ (ole) = o) ) (@)a

+2f2(u) + oo+ 1) f2(v) + 2af (u) f(v)
ala+1)(a+2)
- 412 (u) + 2a(a + 1) f2(v) + daf(u) f(v)
- ala+1)(a+2) '
Proof. Using the arithmetic—geometric means inequality, we have
2f (71 (1 = 7)p(w) +7p(v))) (1 =) f(u) +7f(v))
< (07 (=)o) +7p)) 2 + [(1 =) f(w) + 7/ ()

= [f (o7 (L= )p(w) +7p(v))) I+ (1 —7)2f2(U)+v2f2(v)+2v(1—v)f(U)J(‘(v))~

2.7
Multiplying both sides of with v*~! and integrating with respect to v on
[0,1], we get

2f (u) /O YA =) (o7t (X = y)p(u) +vp(v))) Jdy

(2.6)

21 (v) / Pl (7 (L = 7)p(w) + o)) Ty
1 1
< / VU (07 (L= ) () + 4p(0))) [Py + £2(u) / (1 = )2y
0 0
L) / 12+ 2f(u) f(v) / 7 ly(1 = ). (2.8)
Substltutlngxf L1 = y)p(u) +vp(v)) in , we get
2/(u) v) — p(u w)p' (u)dz
L / (p(v) — p()) F(u)e! (w)
2/(v)
(p(v) = p(u))
1 v a—1 ;2 /
< o [ (o) = ()" ) ()

L 22+ aa + D) + 2/ (u)f(v)
ala+1)(a+2) '

+

- / (o) — pw)* ! Fw)gf (u)de
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So the left-hand side of (2.6) is proved. On the other hand, since f is a p—convex
function, we have

Fr (@ =)p(u) +7p(v))) < (1 =) f(u) +7f(v). (2.10)

Hence
TN N\« ' p u) — u 2 u / w)dzx

1
:/0 VS (7 (L= )plu) +yp(v))) PPy

< / VO = ) f(u) + 7 £ (0)]Pdy
0

_ 277w + a0 + 1) () + 20f () f () _

N ala+1)(a+2) ' '
Combining and we obtain the right-hand side of . The proof of
Theorem [3]is completed. O

Corollary 3.1. Taking o =1 in Theorem[3, we get ([10], Theorem 3.2).

Theorem 4. Suppose that f,h : I — R are two integrable p—convex functions
with respect to the function p. Then for a > 0, the following double integral in-
equalities hold:

1 v a—1 /
T / (pla) — p(w)*™* F(2)h(z)p (x)dz

(p(v) = p(u))
2f(w)h(u) f(w)h(v) N(u,v)
Soz(oz—|—1)(oz—|—2)—'_ o+ 2 +(o¢+1)(0z—|—2)
F(u) F(v) P(u,v)
S et e+ " 2a+2) Tlar )@t (2.12)

N(u,v) = f(u)h(v) + f(v)h(w), P(u,v)= f(u)f(v)+ h(w)h(v) (2.13)
and
F(u) = f(u) + h*(u), F(v) = f*(v) + h*(v). (2.14)

Proof. Since f and h are two integrable p—convex functions, we have
F 7 (@ =)p(u) +7p(0) ke (07 (1 = 7)p(w) +7p(0)))

< [(T=2)f(u) + 7)1 = 7)h(w) +vh(v)]. (2.15)
Multiplying both sides of (2.15) with y*~! and integrating with respect to v on
[0, 1], we obtain

1
/0 Y (7 (=) +3p(0)) b (p7 (1= 7)p(w) +p(v))) dy

< /O VA =) f () + 7 f @A = 3)h(u) +yh(v)]dy (2.16)
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1 1
= F(u)h(u) / 221 = )?dy + N(u, ) / 2 (1 = y)dy
0 0

+1(0)h(v) / 222y,

Substituting z = p~! ((1 — v)p(u) + vp(v)) in (2.16), we obtain the left-hand side
of (2.12)). For the right-hand side inequality, using the arithmetic—geometric means

inequality in (2.16)), gives
/0 VO = ) Fu) + 7 @)1 = 7)) + vh(0)]dy

- /1 ot [lL=fw) @I + [0 = Dhw) +vh(v)]2} "
0

2

=5 | @y =) 4 F@ne 9 2P0y (- )l
0
B F(u) n F(v) P(u,v)
ala+1)(a+2) 2a+2) (a+1)(a+2)
The proof of Theorem []is completed. O

Corollary 4.1. Taking o =1 in Theorem we get ([10], Theorem 3.5).

Theorem 5. Suppose that f,h : I — RT are two similarly ordered integrable
p—convez functions with respect to the function p. Then for a > 0, the following
integral inequality holds:

1 h a—1 ’
(p(v) — p(u)™ /u (p(x) = p(u))*~" f(@)h(z)p' (x)da <

where

M (o, u,v)
et @
M(a,u,v) = f(u)h(u) + af(w)h(v). (2.18)

Proof. Since f and h are two similarly ordered integrable p—convex functions with
respect to the function p, we have

F (7 (1 =y)pw) + 7)) b (o~ (1 = 7)p(w) + 7p(v)))
<[ =7 f(w) +vf(@)][(1 = y)h(uw) +vh(v)]
= (1 =) f(wh(u) +vf(w)h(v) = v(1 = N(f(w) = f(v)(h(u) — h(v))]
< (1 =) fu)h(u) +vf(v)h(v), (2.19)

where (f(u) — f(v))(h(u) — h(v)) > 0. Multiplying both sides of (2.19) with y*~1
and integrating with respect to vy on [0, 1], we get

/0 T (0@ = )p(u) +3p(0))) B (07 (1 = 7)p(u) +3p(v))) dy

/‘\/—\

1
< [t 0= b + v eh). (220)
Substituting z = p~! ((1 — ¥)p(u) + vp(v)) in , we obtain . The proof

of Theorem [fis completed. O



SOME NEW INTEGRAL INEQUALITIES FOR p—-CONVEX FUNCTIONS 125

Corollary 5.1. Taking o =1 in Theorem@ we get ([10], Theorem 3.6).

Theorem 6. Suppose that f,h : I — R are two similarly ordered integrable
p—convez functions with respect to the function p. Then for a > 0, the following
integral inequality holds:

1 R(o,u,v)

T [, )= )T f@h e < TEE @)
where

R(a,u,v) = af(u)h(u) + f(v)h(v). (2.22)

Proof. The proof is similar as Theorem [5| so we omit, it. O

Corollary 6.1. Taking o = 1 in Theorem|[6], we get the following integral inequal-
ity:

b [ e oy < SOOI g

Theorem 7. Suppose that f,h : I — Rt are two integrable p—convex functions
with respect to the function p. Then for a > 0, the following integral inequality
holds:

* (”_1 (W» " (”_1 (pw) ;p(v))) = 50T

v

<[ [ (ote) = o)™ s @do + [ (p(o) = ol S )]

< « 24+ ala+1)
~ (a+1)(a+2) 2a(a+ 1) (o +2)
where N (u,v) is defined from and M (1,u,v) is defined from for value

a=1.

M1, u,v) + [ ]N(u,v), (2.24)

Proof. Since f and h are two integrable p—convex functions with respect to the
function p, by the same way as in the proof of Theorem [2.1] we have

; (p_1 (p(U) ;rp(v)» b (p_l (p(U) —;p(v)»

T (07 (1 =)o) +90(0) + £ (07 (p(w) + (1= 7)p(w)))]

[h (™ (1 = 7)p(w) +3p(v))) + (p‘l (vp(u) + (1 =7)p(v))) ]

U (0 (=)o) +7p()) B (o7 (1= o) +70()  (225)
)

+f (07" (tp(u) + (1= 7)p(v)) b (p7" (tp(u) + (1 = 7)p(v)))
(A =)f (W) +7f(W][th(w) + (1 = 7)h(v)]
Hovf () + (1 =7) ()1 = 7)h(u) +vh(v)]}-
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Multiplying both sides of (2.25) with v*~! and integrating with respect to v on
[0, 1], we obtain

I <p1 (p(U) ;rp(v)>) b (pl (p(U) ;rp(v))>

o 1
< / Y (7 (= m)p(u) +3p(0)) B (07 (1= 1)p(u) +7p(v))) dy
0
(2.26)
[ AT (7 (ot + (1= () B o7 () + (1 =)o)
2 (L) [ 91 =i N [ (0 4+ (1= 2)?) o}
Substituting = = p~ (1 — 7)p(u) +7p(v)) and y = p~* (vp(u) + (1 — 7)p(v)) in
, we obtain . The proof of Theorem [7|is completed. O
Corollary 7.1. Taking o =1 in Theorem [, we get ([10], Theorem 3.7).

Theorem 8. Suppose that f,h : I — RT are two integrable p—convex functions
with respect to the function p. Then for a > 0, the following integral inequality

holds: ; (p—1 (W)) h (p‘l (W))

1 o 24+ ala+1)
< e M e ey g VY @20

where N (u,v) is defined from and M (1,u,v) is defined from for value

a=1.

Proof. From Theorems |§| and Theorem [7} we get the desired inequality ([2.27).
O

Corollary 8.1. Taking o = 1 in Theorem|[8, we get the following integral inequal-
ity:

f (pl <P(“);P(”))> h <p1 (p(u);rp(v)» < 5M(1,u,v12—|— 2N(uvv).
(2.28)

Theorem 9. Suppose that f,h : I — R are two integrable p—convex functions
with respect to the function p. Then for a > 0, the following double integral in-
equalities hold:

v v 1
/ / / 1 (pl) — p()™ ™ (o) — p(w)° ™ £ (5~ (1 = o) +1p(v))

xh (p™" (1 =)p(x) +vo())) o' () (y) dv dy da

2+ ala+1)) 2. 1
S 2atDat2) (p(v) = p(u))™ D(a,u,v) + [CERCED)]
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v

<{ [ o) = o) 1o Gy [ (o) = )" Sy @

u
v

+ [0t = o)™ 1) )y [ (p(0) - pla) i) )

2+ ala+1)) 2
— a2(a + 1)(a + 2) (p(v) - p(u)) D(a,u,v) (2.29)

(f () + f(v)(A(u) + h(v))
2(a+1)(a+2)

+ (p(v) = plu))**,

where

2f(u)h(u) f(w)h(v) N(u,v)
ala+1)(a+2) + a+2 + (a+1)(a+2)
and N(u,v) is defined from (

Proof. Since f and h are two integrable p—convex functions with respect to the
function p, we have

£ (X =7)pw) +vp(v) b (p~" (1 = )p(u) + 7p(v)))
<[ =) f(w) +vf ()] = v)h(u) +vh(v)]
= (1=9)*f(u)h(u )+7(1* VI Wh(v) + h(u) f(0)] + 2 f(0)h(v).  (2.31)

Multiplying both sides of (2.31) with y*~! and integrating with respect to v on
[0, 1], we obtain

/0 Y (7 (L= 9)p(u) +7p())) b (o7 (L =7)p(w) +7p(v))) dy

D(a,u,v) = (2.30)

< Fu)h(u) / (1 = )2y + F(0)h(o) / 12y

H{F()h(v) + h(u) f ()] / 22l (1 = 7)dy

2f (u)h(u) fh(v)  fwh(v) + h(u)f(v)
- + + . (2.32)
ala+1)(a+2) a+2 (a+ 1D)(a+2)
Again, integrating both sides of (2.32)) over the plane domain {(z,y) : = € [u,v],y €
[u,v]} and then using the left-hand side of Theorem [4] we deduce the left-hand

side of (2.29).

On the other hand, substituting = = p~! ((1 — v)p(u) +vp(v)) and using again
the fact that f and h are two integrable p—convex functions with respect to the
function p, we get

[ o) = ot ) ) = (ot0) )"

/ £ )+ 7p(0)))dy
(p(v) = p(u))®. (2.33)
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Similarly, we have

/v@@>fpw»w*f@nmymysiﬁ@i¥ﬂ@lw@>fpw»“. (2.34)

/Ymm—ww»”*mmwwmxs———5——4mw—pWW% (2.35)

N o h(u) + h(v o
[ 00 =t niwt ity =PI (o) e (20)
Combining (2.33)—(2.36), we obtain the right-hand side of (2.29). The proof of
Theorem [9]is completed. O

Corollary 9.1. Taking o = 1 in Theorem[9, we get the following double integral
inequalities:

[ [ [ 16 @=pt) + )
xh (p~" (1= y)p(x) +vp(y)) ' ()0 (y) dy dy da

< %{2 (p(v) = p(u))* U(u,v) + /u“ /UU f@)h(y)p' (x)p' (y) dy dac}

(p(v) = p(u)* 20w, 0) + (f (W) + f(v))(h(u) + h(v))} ’ (2.37)

<
- 3 4
where

(2.38)

3. CONCLUSION

Interested reader can obtain in a similar way new results for different operators
such as the k—Riemann—Liouville fractional integral, Katugampola fractional in-
tegrals, the conformable fractional integral, Hadamard fractional integrals, etc.
and they can be applied to obtain several interesting results in convex analysis,
special functions, quantum mechanics, related optimization theory, mathemati-
cal inequalities using different class of functions. Our ideas and techniques may
stimulate further research in different areas of pure and applied sciences.

Conflict of interest. All the Authors declares that they have no conflict of interest
with anyone.
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