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NEW INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS
PERTAINING GENERALIZED STRONGLY CONVEX
MAPPINGS

ARTION KASHURI ! AND MEHMET ZEKI SARIKAYA 2

Abstract. In this paper, we first obtain a generalized integral identity for
twice local fractional differentiable mappings on fractal sets R (0 < a < 1) of
real line numbers. Then, using twice local fractional differentiable mappings
that are in absolute value at certain powers generalized strongly convex, we
obtain some new estimates on generalization of trapezium-like inequalities.
We also discuss some new special cases which can be deduced from our main
results.

1. INTRODUCTION

Let R, R",Q,Z and N be the sets of real numbers, positive real numbers,
rational numbers, integers, and positive integers, respectively, and
I:=R\Q and Nj:=NU{0}.

In order to describe the definition of the local fractional derivative and local frac-
tional integral, recently, one has introduced the following sets, see [8] 21} 24} [27].
In this paper we are also motivated by, see [3]-[5]. Recently, the theory of Yang’s
fractional sets, see [24] and references therein, was introduced as follows.

For 0 < a < 1, we have the following a-type set of element sets:

(1) The a-type set of integers Z% is defined by
Ze :={0“}U{£n": ne N}
(2) The a-type set of rational numbers Q% is defined by
Q" :={¢": qéQ}:{q“:(g)a: ?",s€N};
(3) The a-type set of irrational numbers I¢ is defined by
= (i iEI}:{iayé(g)a: rseN};
(4) The a-type set of real line numbers R is defined by R := Q> U I«
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Throughout this paper, whenever the a-type set R* of real line numbers is in-
volved, the « is assumed to be tacitly 0 < a < 1. One has also defined two binary
operations the addition + and the multiplication - (which is conventionally omit-
ted) on the a-type set R* of real line numbers as follows. For a®,b® € R, two
binary operations the addition + and the multiplication - are defined as

a®+b* :=(a+b)* and a®-b* =a”b* := (ab)”.

Then one finds that (R, +) is a commutative group.
For a®,b%, c® € R* the following holds:

(1

)
2)
3)
4)
5)

A~ N S N

a® 4+ b* € R,
a® + (ba + Ca) — (aa + ba) + Ca;
0% is the identity for (R*,+). For any a® € R, a* + 0* = 0* + a® = a%;
For each a® € R*, (—a)® is the inverse element of a® for (R, +), so we
have

a® +(=a)® = (a+ (-a))* = 0%

(R>\ {0}, ) is a commutative group.
For a®,b%, c® € R* the following holds:

(1)
(2)
(3)
(4)
(5)

5

a® - b* € R

a® - b* = b* - a%;

a® - (ba . ca) — (aa . ba) e

1% is the identity for (R®,-). For any a® € R*,a® - 1% = 1* - a® = a%;
(o7

For each a® € >\ {0}, (

) -

is the inverse element of a* for (R,-), so

SHE
N——

we have

Distributive law holds: a® - (b® 4+ ¢®) = a® - b* + a® - c*.

Furthermore, in [8], we observe some additional properties for (R, +,-) which
are stated in the following proposition.

Proposition 1.1. FEach of the following statements holds true:

(a)
(b)
(©)

(d)

Like the usual real number system (R,+,-), (R*,+,) is a field;
The additive identity 0% and the multiplicative identity 1% are unique;
The additive inverse element (—a)® and the multiplicative inverse element

1 «
() of element a® are unique;
a

* ay be written as —a®. For

[0

1\ 1
each b* € R\ {0%}, its inverse element (b) ay be written as e but

For each a® € R“, its inverse element (—a)

not as b—a;
If the order < is defined on (R*, +,-) as follows: a® < b* in N if and
only if a < b in R, then (R*, +,+, <) is an ordered field like (R, +,-, <) .
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In order to introduce the local fractional calculus on R, we begin with the
concept of the local fractional continuity as in Definition

Definition 1.1. A non-differentiable function f : ® — R*, z — f(x), is said to
be local fractional continuous at o if for any € € RT, there exists § € ®T such
that

[f(x) = flzo)| <€
holds for |z — zo|< ¢. If a function f is local continuous on the interval (a,b), we

denote f € Cy(a,b).

Among several attempts to have defined local fractional derivative and local frac-
tional integral, see ([23], Section 2.1), we choose to recall the following definitions
of local fractional calculus, see [9] 23] 24].

Definition 1.2. The local fractional derivative of f(z) of order a at x = xg is
defined by

df@))  _ o A — f(zo))
dz?® lg=z, z—zo (.’E — 1~0)o¢

where A*(f(x) — f(zo)) 2 T(1 + a)(f(z) — f(xo)) and T is the familiar gamma
function, see ([20], Section 1.1).

F1 (o) = 2, D5 f(x) =

Let f(®)(z) = D& f(x). If there exists f*TD(z) = D ... DY f(x) for any
———
k+1 times
r € I CR, then we denote f € D y1)q(]), where k € No.

Remark 1.1: It is found, (see [24] and references therein), in this expression, «
is precisely the Holder exponent of function defined Cantor’s set. That is to say,
[d(z — z0)]" which is a fractal span, is a fractal geometrical meaning.

Definition 1.3. Let f € C,la,b]. Also let P = {to,...,tn}, (N € N) be a
partition of the interval [a,b] which satisfies a = tg < t; < --- < ity_1 <ty = 0.
Further, for this partition P, let At := max o<j<ny—1 Atj, where At; :=t;11 —¢;
and j =0,...,N — 1. Then the local fractional integral of f on the interval [a, ]
of order o (denoted by oI{* f) is defined by

(o)
oly " f(0) 1+a / F(#)(@t)* 1+a At—me

provided the limit exists (in fact, this limit exists if f € Cy[a, b]).

Here, it follows that o[\ f = 0ifa = band ,I\*) f = — I8 fifa < b. Tf .11 g
exists for any z € [a, b] and a function g : [a, b] — R®, then we denote g € i) [a, b].

We present some of the features related to the local fractional calculus that will
be required for our main results, see [24].

Lemma 1. The following identities hold true:



94 A. KASHURI AND M. Z. SARIKAYA

(1) (Local fractional derivative of x*<).

dal’ka F(l + kOé) (kfl)a

dzo T+ (k—1)a)"
(2) (Local fractional integration is anti-differentiation).
Suppose that f(x) = g!*)(z) € Cula,b]. Then we have
17 1) = 9(0) — g(a).
(3) (Local fractional integration by parts).
Suppose that f(z),g(x) € Dufa,b] and £ (z), ¢'®(x) € Cyla,b]. Then
we have
o1 F@)g @ (@) = f@)g (@), = oly® ) (2)g(@).
(4) (Local fractional definite integrals of z*<).
1 b (1 + ka)
Ol dp)® = b(k+1)a (k) LeR
F(1+a)/ax (dz) F(1+(k+1)a)( “ )
For further details on local fractional calculus, one ay refer to, see [22]-[26].

Definition 1.4. (|2I]) A function f: I C ® — R is said to be convez on I, if

ftr+ (1= t)y) <tf(x)+ (1 —1)f(y)
holds for every z,y € I and t € [0,1].
Definition 1.5. ([1I]) A function f : [0,b] — R is called m-convex with m € [0, 1],
if for any z,y € [0,b] and ¢ € [0, 1] we have
fltz +m(1 —t)y) < tf(z) +m(l —1)f(y).
Definition 1.6. (([II]) A function f: I C R — R is called strongly convez with
modulus c € R, if
fltz+ (1 —t)y) < tf(x) + 1= 1) f(y) — ct(l —t)(z —y)°
holds for every z,y € I and t € [0,1].

Strongly convex functions have been introduced by Polyak, see [II] and refe-
rences therein. Since strong convexity is a strengthening of the notion of convexity,
some properties of strongly convex functions are just stronger versions of known
properties of convex functions. Strongly convex functions have been used for

proving the convergence of a gradient type algorithm for minimizing a function.
They play an important role in optimization theory and atheatical economics.

Definition 1.7. (|II]) A function f : I C # — R is called strongly m-convez with
m € [0,1] and modulus ¢ € R, if
ftz +m(1—t)y) < tf(z) +m(l—1)f(y) — emt(l—t)(x - y)*
holds for every z,y € I and ¢ € [0,1].
Remark 1.2: Any strongly m-convex function is, in particular, m-convex. How-

ever, there are m-convex functions, which are not strongly m-convex with modulus
¢, for some ¢ € R, (see [11], Example 1.8).
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The following inequality, named Hermite-Hadamard inequality, is one of the most
famous inequalities in the literature for convex functions.

Theorem 1. Let f : I C ® — R be a convex function on I and a,b € I with
a < b. Then the following inequality holds:

1(45) = 5 [ s < 120 -y

Mo et al. in [I5], introduced the following generalized convex function.

Definition 1.8. Let f : I € ® — R* be a function. For any x1,zo € I and
A € [0, 1], if the following inequality

fAz1+ (1= ANz2) < A% f(1) + (1= A)* f(22)
holds, then f is called a generalized convex function on I.

Here are two basic examples of generalized convex functions:

(1) f(z) =2°?, where x > 0 and p > 1;
> ak
(2) g(x) = Ey(z%), z € R, where E,(z%) := ’;)I‘(lllklm) is the Mittag—

Leffler function.

Recently the fractal theory has received a significant attention, see [I]-[19], [22]-
[27]. Mo et al. in [I5], proved the following analogue of the Hermite-Hadamard
inequality ([L.1)) for generalized convex functions.

Theorem 2. Let f : [a,b] — R be a generalized convex function with a < b.
Then, for all x € [a,b], the following inequality holds:

at+b) _TO+a) f(a) + f(b)
f< 5 ) < b—ar ol f(2) < = (1.2)

Remark 1.3: The double inequality is known in the literature as generalized
Hermite-Hadamard integral inequality for generalized convex functions. Some of
the classical inequalities for means can be derived from with appropriate
selections of the mapping f. Both inequalities in (1.1) and hold in the
reverse direction if f is concave and generalized concave, respectively. For some
more results which generalize, improve, and extend the inequality , one ay
refer to the recent papers, see [7], 12} [14],[16]-[18] and references therein.

An analogue in the fractal set R® of the classical Holder inequality has been
established by Yang in [24], which is asserted by the following lemma.

Lemma 2. Let f,g € Cyla,b] with p~' +¢~1 =1, where p,q > 1. Then, we have

b
s L @@ <
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1

Lo NE N
§<m+a> [ @) <dm>> (F(HQ) [ 1ata) <dx>>.

Theorem 3. (Generalized Ostrowski inequality) Let I C R be an interval, f :
I° C R — R (I° is the interior of I) such that f € Dy (I°), and @ e Cyla, b
for a,b € I° with a < b. Then, for all x € [a,b], the following inequality holds:

@ o o x_%% - « «
o) - ) 1?10 <2“M[;+<H> 6= 7).
(1.3)

Motivated by the above literatures, in the next section, we first introduce the
notion of generalized strongly convex mappings and after that we will obtain a
generalized integral identity for twice local differentiable mappings on fractal sets
R* (0 < a < 1) of real line numbers. Also, we use this identity to obtain some new
estimates on generalization of trapezium-like inequalities for twice local fractional
differentiable mappings that are in absolute value at certain powers generalized
strongly convex. We will discuss some new special cases which can be deduced
from our main results.

2. MAIN RESULTS
The following definitions will be used in the sequel.

Definition 2.1. (JI0]) For 0 < « < 1 and = € R, the local gamma function is
defined by

To(z) = 5 /0 T B (o)t De (gpye. (2.1)

For a =1, (2.1)) gives integral representation of classical Euler gamma function
I'(z). So in this case, 'y (z) = I'(x).
Also, the following relations holds for local gamma function:
(1) To(z +1) = (a!)aly(z), for x € RT;
(2) Ta(n+1) = (a!)™n!, for n € N.
Definition 2.2. ([10]) For 0 < a <1 and z,y € R", the local beta function with
two parameters x and y is defined as

B (z,y) = /01 te=Deq — =D (gye, (2.2)

For a = 1, (2.2)) gives integral representation of classical Euler beta function
B(z,y). So, in this case, B, (z,y) = B(x,y).

Theorem 4. ([I0]) Let x,y € RT, then for local gamma and local beta function
the following equality holds:

(2.3)



NEW INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS 97

Recently, Anastassiou et al. in [6], introduced a new class, called generalized
strongly m-convex, as follows.

Definition 2.3. A function f : I C ® — R® is called generalized strongly m-
convex with m € [0, 1] and modulus ¢ € R, if

FOz+m(1=Nzg) < X f(z1) +m*(1 =N f(22) — (em) A (1 — N (x — 29)>*
(2.4)
holds for any z1,z2 € I and A € [0, 1].

Remark 2.1: In Definition if we choose @ = 1, then we get Definition
These mean that, any generalized strongly m-convex mapping is, in particular,
strongly m-convex. Moreover, if f is generalized strongly m-convex with modulus
¢, then f is generalized strongly m-convex with modulus k, for any constant 0 <
k <ec.

As special case of Definition for m = 1, we obtain the following definition.

Definition 2.4. A function f: 1 C R — R® is called generalized strongly convex
with modulus ¢ € T, if

FOa1 + (1= Naz) <A f(@1) + (1= X f(a2) = X (1 = X)* (21 — 22)** (2.5)
holds for any z1,z2 € I and A € [0, 1].

For establishing our main results regarding some new estimates on generaliza-
tion of trapezium-like integral inequalities on fractal sets £ (0 < a < 1), we need
the following lemma.

Lemma 3. Let I C R be an interval, f : I© C R — R (1Y is the interior of I)
such that f(*) € D, (I°) and f®%) € Cyla,b] for a,b € I° with a < b. Then, for
all x € [a,b], the following identity holds:

G B0 s [ (B ) 7 (50) + 1 (S5) + )

(b—a)® o [(3a+Db o (a+b L {a+3b )
el (<)o () (42) o
1

b
= P o) —a)e J, PO 0w, (2.6)
where
(t—a)*, € [a, 3atb);
t—3a+b 2a7 3a+ 7i’
p(t) = Et_af;,))za’ h“b 423 ;
(t _ a—ZSb)Qa , [a—z3b ]
We denote
1

b
A(a,b) = / PO, (2.7)

I'l4+a)l'(1+2a)(b—a)®
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Proof. Using twice the local fractional integration by parts and changing the vari-

ables in (2.7)), we have

A7) = o
y [/a?’“fb (t — a)2 f200 (4 ga; ( 3a+ b) £ (1) (dt)
-

~ 4%T(1+ a)l(1+ 20)

L (2 ) (2 ()0

(2 () ) (2

- mrn oo () e a=e)

e |, o () ero-on)
o ((43) i () a-o)

st e (450) e (M) a=0) ane
oo ((5) e () a-0)

a0 (55 (45 o o)

et (e () a-0)

Ll (0
3a+b 4°T(1 + 2a)
-

43ar(1(ia)%ij+2a) {(b 4&) e ( 4 1+a)(b—a)
49t 3a+b 1
b—a B
(357 ea-nm)
—wmw el

4
s 4°7( 1+2a
(b— D1+ a)( e

t+
)

(
t
(dt)®

+
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[(bzwta) f((a;-b>t+ (3a:b> (1_t)) ‘:
SR (e (o

(@ (a+3b\ 49T+ 20)
<b—a>af ( i > T+ a)(b—a)e

Laa ((557) 1+ (557 a-0)
40;5(15;) /Olf ((ang) t+ (a;b> (1 —t)) (dt)°]
o

) 4°‘F(1+2a)
b—aa! O i) ae

x{%f <bt+ <a+3b> 1-t ) ’;
0 o (420 o)
= aléa)f(t)_4ar2(11+a) [f <3a:—b>+f (a;b>+f <a+3b>+f(b)}

(b_a/)a ( ) 3a+b ((X a+b (a) a+3b
TR+ )T (1 + 20) e + 3 )t +HOW)],
This completes the proof of the lemma. O

+

+

Using Lemma |3} we now state the following theorems for twice local fractional
differentiable mappings that are in absolute value at certain powers generalized
strongly convex.

Theorem 5. Suppose that the assumptions of Lemma @ are satisfied. If | f)|?

is generalized strongly convez, then for p,q > 1, where p~' +q¢ ' =1 and c € N+,
the following inequality holds:

@ (b — a)2a F(]- + 2pa)
1457(@ D) < T30 (/m @+ )a) (28)

R (e i) () RS
R ()l (S21)- () e
L (- () b () )

(1 +a)
+\/1“F((11++20;)) (ﬂm)(b)l" + ]f@oo (az?’b) q) ~ o (b;‘I)Qa f("i(ii))}

(e
—C

(e
—C

b_
4

b—a\>* Ba(2,2
4
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Proof. From Lemmas [T} 2] and [3] Definition [2.2] generalized strongly convexity of
| f(?*)|? and properties of the modulus, we have

< (b—a)?*
= $oT(1 + a)l(1 + 2a)

x/oltm[ £ (<3aT+b>t+(1—t)a) ‘+ £ ((a;rb>t+ (3a4+b> (l—t)) ‘
£ <<a23b> t+ (a;rb> (l—t)) ( + |2 <bt+ <a13b> (1 —t)) H(dt)a
e (s )
{ (e e (57 e - om) )
(o [ (52 (2220
(s [ 1 ((<52) e (5 =) )
+ <F(11+a) Al ‘f@a) <bt+ <a+43b> (1 —t)> ’q(dt)‘“); }

< (b—a)> I'(1+ 2pa)
= Per(1+20) | T+ 2 + D)

Alrera [ e G2 [+ a-veue@r
o (2 a) ]’
e e () o ()
S e I
i [ (52 0l (2
e () ]
e [ (1w +a - e (“42)
e (o 22) Y] )

1A (a,b)

—+

+

q

q
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_ (b—a)* L(1 + 2pa)
© 43T (14 2a) \| T(1+ (2p + 1)a)

(R (e (22 [+ o) - e (52) B2
leaae (7 (50l ()1 - (°7%)
H[RE) ([ (HE) [ e (SE2) ) e (P0) T B522)

Rz (o e () () )

So, the proof of this theorem is completed. O

We point out some special cases of Theorem

Corollary 5.1. Under assumptions of Theorem[5, if we choose p = q = 2, we get
the following generalized trapezium-like inequality:

47 (@)l < 43ar 1+2a \/ 1123 (29)
AR (e () o) - (452) 13
[t (e (S5 b (1) - (5) " fie
At (7 () (59 1) - () ms
+¢Pr((llj;2) <|f(2a>(b)l2 + | (“23") ‘2> o (b . “)m fa(i’ ?) L

Corollary 5.2. Under assumptions of Theorem @ taking ¢ — 07, we get the
following generalized trapezium-like inequality for generalized convex function:

(@) (b—a)® I'(l+2pa) /T(1+a)
457 (0] < a1 2w (/m +(2p+ Da) \/F(l T 2a) (2.10)

fea) <3“:b> "+ 17 @) + | e ("‘2“’> "+ |z (?“‘Ib) i

[z (ang) ‘q+ ’f@a) (a+b \/|f(2a) )+ ’f 20) <az3b> }

{

+(I
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Corollary 5.3. Under assumptions of Theorem@ by taking K = ||f(2°‘)||oo, we
get the following generalized trapezium-like inequality:

|A§ca)(a, b

(b — a)* (1 + 2pa)
(/P( (2.11)

)< 430=17(1 + 20) 14+ (2p+1)a)

(1 N 2c N
LfTta) L (b—a\ B2
I'(1+2a) 4 Ir'l+a)
Corollary 5.4. Under assumptions of Corollary taking ¢ — 0T, we get the
following generalized trapezium-like inequality for generalized convex function:

s KY3(b — a)? (/ (1 +2pa) \Q/F(HO‘). (2.12)

OIS gma- T(1+2a) | T+ 2p+ Da) \| T(1 + 2a)

Theorem 6. Suppose that the assumptions of Lema @ are satisfied. If | f|7 is
generalized strongly convex, then for ¢ > 1 and c € R, the following inequality
holds:

() (b—a)*™ (14 2a) -3
47 (@, b)l < 4327 (1 + 20) ( 1—|—3a) (2.13)
3a+b b—a\>* Ba(4
x{(/f(?a)(@: )‘qc( )+|f2oc( ( 1 > 1“1+a

m»-‘

) o (2 -2 B

+Hf<2a><az%>]qc(a)ﬂf(?a)(“;b)\D( (b“‘> 11’04)

ot (52 - () 25)
P(1+a) . T(1+2a)

~ I(1+3a) B
C)=tixa)y P9=ta320 P Tatsa T

Proof. From Lemmas [T] and [3] Definition [2.2] generalized power—mean inequality,
generalized strongly convexity of |f(**)|? and properties of the modulus, we have

m»a

where

I (b _ a)2a
= 43D(1 + a)T(1 + 20)

x/oltzf*[f@‘*) ((SGT—H))t+(17t ) ‘+’f(2“) ((“;b>t+ (3 Ib) (14)) ‘
+‘f<2°“) <<az3b>t+ (a;b> (1 —t)) ‘ + ‘f@“) (bt+ (a—;3b> (1 —t)) H(dt)“

A5 (a,b)
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= 43£vbrz1a+)2;a) (r(11+a) /01 t%(dt)a)

8 (r(11+a) /Olth 7 ((3(14%) t+(1 —t)a) )q(dt)O‘)é
eaa [ b ((57) e () 0-0) ]‘th)a);
(mia)/o a| (2 <<a+3b> . <a+b> ) _t)> ‘q(dt)o‘)é

1

1 2 4 2 (
(g [ el (s (52 a-0) )}
< o ()™

(1= 1) (a)|*

s [l ()
oo (50 a) Y]’

1 e a+by 3a+b\ |¢
£20 (4o 2o) (21T 7 ‘ 1 —4)@ (2a) [ P4 T O ’
+[F(l+a)/0 ( f ( D) > + ( ) 1

1

— O tO(1 — ) (a;rb - 3a:b>2a)(dt)“} ‘
+[ﬁ /01 20 (t“ £ (CLZ%) ‘q +(1— 1) (T) ‘q

1

—eraeoe (S0 “jb)m)(dt)a} ‘1
+[ﬁ / 1 20 (£2]f 2 0)|7 + (1 - £)°] 2 (aff’b) q

(1 — ) ( a+3b> )dt }}

 (b-a)* (m + 2a))1
43T (14 2a) \T'(1+ 3a)

x{(/‘f@a) (3a:b> Cla
+
+

1-1
q

+

7 (S50 et + 1 (20 o e (252) T 22621
re () oo (55 o - (452)” Ry
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104
+§/ e et + e (52 ') - e (2 a)m i)

So, the proof of this theorem is completed. O

We point out some special cases of Theorem [6]

Corollary 6.1. Under assumptions of Theorem[6], if we choose ¢ =1, we get the
following generalized trapezium-like inequality:

| (b a)Qa
= 43T (1 + 20)

i (5o e (52 2

w(%) (a+b> ‘C ’f@a)<3a+b> ‘D a(b;a>2a (( 2)

145 (a,b) (2.14)

I'l+a)
+‘f(2"‘> <a+3b) ‘C ‘f@a) <a+b> ’D e <b4a>2°‘ 1(+a)>
HIE@I0() + |12 (42 |pla) - (b;“)za a8,

Corollary 6.2. Under assumptions of Theorem @ taking ¢ — 07, we get the
following generalized trapezium-like inequality for generalized convex function:

() (b—a)** (T(1+2a)\'7
|A; (a,b)] < £BoT(1 + 2) (r(1+3a))

(il (22) ot +1enaroe

b\ |4 3a+0b)\ |2
(2a) (2T (2a)
(3°) et +]re (*5)

30 b
| re (“z ) "Ca) + [ <“; ) ‘

+i/f<2a><b>|qc<a> e (5[

Corollary 6.3. Under assumptions of Theorem@ by taking K = ||f(20‘)||oo, we
get the following gemeralized trapezium-like inequality:

(2.15)

_|_q

D(a)

D(a)

D(a)}.

Q=

—a)% )\~
A9 (a, )] < 0= ) (””2)) (2.16)

T 4327ID(1 4+ 2a) \I'(1 + 3a)

v () R
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Corollary 6.4. Under assumptions of Corollary taking ¢ — 0T, we get the
following generalized trapezium-like inequality for generalized convex function:

1A% (a,b)] <

f

K ¢/D(a) + Cla)(b— a)2° (F(l +2a))1_“ (2.17)

Bo=1T(1 + 20) (1 + 3a)

Remark 2.2: For a = 1, by our Theorems [5] and [6] we can obtain some new
estimates on generalization of trapezium-like inequalities for twice differentiable
mappings that are in absolute value at certain powers strongly convex.
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