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ABOUT SOME KINDS OF BICENTRIC POLYGONS AND
CONCERNING RELATIONS

MIRKO RADIC AND ALEKSANDAR ZATEZALO

Abstract. In the article we present some new properties and relations con-
cerning bicentric polygons with common circumcircie and center of their in-
circles. A new generalized definition of Fuss’ relation for k-bicentric n-gons
is introduced. A general conjecture about k-bicentric n-gons is stated and it
is proved for some special cases.

1. INTRODUCTION

A polygon which is both chordal and tangential is briefly called bicentric poly-
gon. The first that was concerned with bicentric polygons is German mathemati-
cian Nicolaus Fuss (1755-1826), a friend of Leonhard Euler. He posed himself the
following problem (known as Fuss’ problem of the bicentric quadrilaterals):

To find the relation between the radii and the line segment joining the centers
of the circles of circumscription and inscription of a bicentric quadrilateral.

He found that

(r* - 22)2 =2p% (r* + %), (1.1)

where 7 and p are radii and z is the distance between the centers of the circles of
circumscription and inscription. (See [5].) This problem is listed and considered
in [4, pp. 188-192], as one of the 100 great problems of elementary mathematics.
Fuss also found corresponding formulas for the bicentric pentagon, hexagon,
heptagon and octagon, see [6]. These formulas may be stated as follows:

P’ +0Pp(p+a) —pir* p+a) - (p+9) (p-q)° =0, (1.2)

' — 27?0 (P + @) =t (0 — ¢2)°, (1.3)
(pa=p(p—a) = 20%) 2000/ (0 = p) (D + @) + (P°F° = p* (P*+  (14)
7)) 20\/(a=p)(P+a) = (g~ p(p— ) (0°C +p* (P - %)),
(0® (0 + ¢*) - P*a®)" = 16p*q*p" (0* — p?) (¢ - p?) (1.5)
where p=r+2z,qg=1r— 2.
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The corresponding formula for triangles is

r? — 2% = 2rp, (1.6)

and had already been given by Euler.

The very remarkable theorem concerning bicentric polygons is given by French
mathematician Poncelet (1788 - 1867). In the formulation of this theorem will be
used the so-called Poncelet traverse. In short about this.

Let C; and Cs be two circles in a plane. If from any point on C5 we draw a
tangent to C7, extend the tangent line so that it intersects C5, and draw from
the point of intersection a new tangent to Cp, extend this tangent similarly to
intersect Cs, and continue in this way, we obtain the so-called Poncelet traverse
which, when it consists of n chords of circle Cy (circle of circumscription), it is
called n-sided.

The Poncelet’s theorem (for circles) can be expressed as follows.

If on the circle of circumscription there is one point of origin for which n-sided
Poncelet traverse is closed, then the n-sided traverse will also be closed for any
other point of origin on the circle.

Poncelet demonstrated that analogously holds for conic sections so that the
general theorem reads:

Poncelet’s closure theorem. If an n-sided Poncelet traverse constructed for
two given conic section is closed for one position of the point of origin, it is closed
for any position of the point of origin.

Although the Poncelet’s closure theorem date from nineteenth century, many
mathematicians have been working on number of problems in connection with
this theorem. Many interesting and useful information about it we have found in
quoted articles concerning Poncelet’s closure theorem, especially in [2], [8] and][9)].

In this paper we shall restrict ourselves to the case when conics are circles, one
inside the other.

In Section 2, we give notation and some known results from [11] used in the
article.

In Section 3, we derive rational relations which give us Fuss’ equations for 1-
bicentric and 2-bicentric pentagons.

In Sections 4, 5, and 6, in similar way as in Section 3, we derive rational relations
for all possible k-gons for hexagons, heptagons, and octagons, respectively.

In Section 7, we give in Theorem 7.2 and Corollary 7.3, how radius of incircle of
a k-bicentric polygon depends on k. Then we give general definition of the Fuss’
equation for k-bicentric n-gon, see Definition 7.7, which allowed us in Theorem 7.8,
to give dependence of Fuss’ equations of k-bicentric n-gons on k. In the end, using
general definition of Fuss’ equations, we present conjecture about Fuss’ equations
of k-bicentric n-gons. It is proved for some special cases given as examples. The
open problem is formal proof of the conjecture.

Results in Sections 2, 3, 4, 5, and 6 motivate general results in Section 7.
This article also explains factors in relations obtained in [9] using definition of
k-bicentric n-gon.
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2. NOTATION AND SOME KNOWN RESULTS

If A;... A, is a bicentric polygon under consideration, then by C) will be
denoted its incircle and by C, circumcircle. By p will be denoted the radius of C}
and that of Cy by r. The center of C} will be denoted by M and that of Cs by O.
The distance between M and O will be denoted by z.

Very important role will have the angles 3; given by

B; = measure of ZMA;A;1q,i=1,...,n. (2.1)

Of course, indices in (2.1) are calculated modulo n.
Some symbols, which we have used in [11], will also be used in this paper.

Let us define symbol S; (z1,...,z,). Let 1,...,z, be real numbers, and let j
be an integer such that 1 < j < n. Then S;(z1,...,2y) is the sum of all
products of the form z;, ...z;;, where 4y,...,i; are different elements of the set

{1,...,n}, that is
Sj (IL‘l,...,:L‘n) = Z Ty ....’lfij. (22)
15i1<"'<i]'5n
Let T]' := S; (tan B1,...,tanf,) and Cp =5, (cot By, ..., cot By).

Remark 2.1. In the following we shall, for brevity, write S} instead of Sj (t1,...,tn),
where ¢y, ...,t, will be lengths of tangents.

For example we have Sis = t1 + iz + t3, Sg =t1t2 + t2t3 + t3t1, and Sg = t1t2t3.
Let
n-—1 2l if o is odd,
2 = n—2

5—, if nis even.
In [11, pp. 200], we have the following definition (Definition 1).
Let Ay,..., A, be tangential polygon and let k be a positive integer such that
k< ["T”l] Then the polygon A,,..., A, will be called k-tangential polygon if
any two of its consecutive sides have only one point in common and if holds

Zﬁ, (n — 2k) = 5 (2.3)

where 23; = measure of AAn_HiAiAHl, b= L s mytl
Of course, if M is the center of the incircle of 4y ... A,, then

Bi = measure of ZMA;A;q,i=1,...,n

It is easy to see that a tangential polygon A, ... A, is k-tangential if
Z i = 2k, (2.4)
i=1
where ¢; =measure of ZA;MA;;1,i=1,...,n. Namely, from (2.3) and

2f; = measure of LA, _11;AiAi1,i=1,...,n,
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it follows that
Bi+Biri=m—pi,i=1,...,n
Hence
n
> " (Bi + Biy1) = nm — 2kn
=1
or

2iﬁ,~ = (n — 2k)m.
i=1

For example, in Figure 1, we have drawn one 2 tangential hexagon. More about
this will be said in connection with the equation (2.6).
In [11] the following theorem is proved.

Theorem 2.2. Let ty,...,t, be any given lengths (in fact positive numbers) and
let k be a positive integer such that k < [”;1J Then there exists a k-tangential
polygon whose (consecutive) tangents have the lengths t1,...,ty.

The connection between ¢;,...,t, and p is given by the following corollary.

Corollary 2.3 (Slightly modified). Let py be the radius of a k-tangential polygon
whose tangents have the lengths ti,...,t,. Then, if n is odd, every pr, k =

1,..., %51, is a solution of the equation
Spg™l — 833 4 SPa™S — . 4+ (=1)°ST =0, (2.5)
where s = (1+3+5+...n)+ 1.
If n is even, then every p, k=1,..., 1’—,,:—2, is a solution of the equation
Spzn~? — 83"t 4 2™ 8 — .. 4 (-1)°S7_, =0, (2.6)

where s=(1+3+5+---+n—1)+1.
For example, if n = 3,4, 5,6, then
Sla: -S3=0, (triangle)
Stx? — 83 =0, (quadrangle)
SPzt — S32® +S2 =0, (pentagon)
S%zt — S$2? + S§ =0,  (hexagon)
and
S?pi =0 k=1
Sipt -83=0, k=1,
Sipr —S3pE+ 82 =0, k=1,2,

Sipy—Sipr+ S8 =0,k=1,2. (2.7)
So,if n=6and t; = j, j = 1,...,6, then the equation (2.6) can be written as
21z* — 73527 + 1764 = 0,

from which we get p; ~ 5.69280, p, ~ 1.60995. See Figure 1. (The other hexagon,

which is 1-tangential, is not drawn since p; is rather large for construction in the
text.)
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As
FIGURE 1. 2-tangential hexagon with py &~ 1.60995

Remark 2.4. There are bicentric polygons with property that, as tangential poly-
gons, are k-tangential. When it is important to point out, it will be said that these
polygons have type k or, briefly, that these polygons are k-bicentric polygons.

3. SOME RELATIONS CONCERNING BICENTRIC PENTAGONS

First we prove the following theorem.

Theorem 3.1. The relation between r, p, and z for 1-bicentric pentagon can be

written as
2
r—z-—p p T+z+p
= —_— - 1- 7/ . 3.1
P 2r +(r—2) (r—i—z) 2r (3-1)

Proof. We can take (by Poncelet’s closure theorem) a pentagon which is sym-
metric with respect to z-axis and consider situation shown in Figure 2, where
Aj (rcosr,msing;), As (rcosps,Tsings), p; = LPOA;,;1=1,2and 0 < ¢ <
3r
P2 < 5
It is easy to find that distances of the point M (z,0) from the lines A; A5, A; Ao,
and A Aj are given by

p+z=rcosp, (3.2)
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I
N

FIGURE 2. 1-bicentric pentagon symmetric with respect to z-axis

p=—z cosw —l—rcosw, (3.3)
2 2
p—zsxnw—+r31nﬂ (3.4)
2 2
Since from (3.2) and (3.4) we have
sm— /r—z— 1: /r+z+p’
2r
2
sm&: p 3 cosﬂ: 1- p .
2 T4z 2 T+ 2z
and (3.3) can be written as
p=(r —z)cos%cos 5 + (r+z)s1n7s1n%
it is easy to see that above equality can be written as (3.1).
The theorem is proved. O

After rationalization and factorization of (3.1), we get
(r+z+p)° (22 = r? +2rp) (3r*2% — 18 — 3r22% + 28 — 2r5p 4 47322
2rz'p +4rtp® — 4722 p* + 8r2%p®) = 0. (3.5)
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The third factor on the right hand side of (3.5) can be written as Fuss’ relation
(1.2).

Corollary 3.2. It holds

2
p r+z—p
: 3.6
<r—z> ~ 2r (56}
Proof. From (3.1) we have
p 2>v(r+z)2—p2‘r+z+p
P T(T'+Z)2 2r
or
2 2
p rt+z+p r+z—p
> ° )
<r—z> ( T+ 2z ) 2r
from which and ”{—ij—e > 1, we get (3.6). O

Theorem 3.3. The relation between r, p, and z for 2-bicentric pentagon can be

written as
2
p r+z—p r— 24P
= — 1= - —_— s
p=ip=2) (r + z) \/ 2r p\/ 2r (37)

Proof. Here we may take a symmetric pentagon as shown in Figure 3, where

Al (TCOSQDIaTSinSDI) ’ AQ(_T,O) ’ A3(TCOS(p1,—TSiIlQ01),

. . 3
Aq (rcos g, rsings) , As(rcosps, —rsings) , 0< ¢ <y < =,

5
where p; = LPOA;, o = LPOA;,.
Let us remark that for every 0 < z < r there are unique angles ¢; and 2 such
that A; Ay A3 A4 A5 is symmetric with respect to z-axis and that 0 < ¢; < g < 3—5’5
The distances of the point M (z,0) from lines A; A3, A3A4 and A4 A5 are given
by

p=(r+z)sin %l, (3.8)
_ P1 + P2 P1— P2
p=Teos o= — ze0s ——o—, (3.9
) p =2z —TCOSps. (3.10)
From (3.8) and (3.10) we have
$1 P Y1 P ’
sm7=m 3 C057= 1- <T+Z> § (311)

P2 [r—z+p P2 _ [T+z-—p
SIS Sy e S =y (3.12)
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At
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As

FIGURE 3. 2-bicentric pentagon symmetric with respect to z-axis

Equation (3.9) can be written as

1

= (r — z) cos = cos ? —(r + 2)sin —2— sin %3 (3.13)
From (3.11), (3.12), and (3.13), we get (3.7).
The theorem is proved. O

After rationalization and factorization of Equation (3.7) we get

(p—1—2)% (r? = 2% + 2rp) (r® — 3r*22 4+ 3r22% — 2% — 2r%p+
4r32%p — 2rz'p — 4rtp? + 4r?22p? + 8r2p®) = 0. (3.14)
Thus, for 2-bicentric pentagons instead of Fuss’ relation (1.2), we have relation
% —3r122 4 3r22% — 25 — 2% p + 4r32%p — 2r2tp -
rp? +4r?2%p? + 8r22p® = 0. (3.15)

As can be seen ,these relations have exactly the same terms but differ only in
some signs + and — in front of the terms.
These relations can be obtained in other ways, see [9, pp. 73].
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Corollary 3.4. It holds

2
( £ ) L IXZTR (3.16)
2r

r—=z

Proof. From (3.7) we have

(T+z—p>2 r4+z4p ( p )2
" > ,
r+z 2r r—2z

which gives (3.16). O
Corollary 3.5. It holds
2
< £ ) g DEETR (3.17)
r—2 r—z+p
Proof. From (3.7) we have
2 2
2 (r+2)—p* r+z—p 2 T—z+p
(r=2) (r+z) 2r > P 2r
or
r+z-p\° r \’
(—r-Iz_) (r+z+p)> (r—z) (r—z+p),
from which we have (3.17). O

4. SOME RELATIONS CONCERNING BICENTRIC HEXAGONS

First we prove the following theorem.

Theorem 4.1. The relation between r, p, and z for 1-bicentric hexagon can be

written as
1=\/ —<Tiz)2+\/1—(rfz)2.- (4.1)

Proof. We can take a hexagon which is symmetric in relation to axis z and consider
situation shown in Figure 4, where

Ay (r,0) , Ay (rcospr,rsing;) , As(rcoses,rsings) , Aq(-r,0).

It is easy to see that distances of the point M(z,0) from the lines A; Ay, A3 A3,
and A3 A4 are given by

p:(r—z)sinﬂ,
2
p: _zcosgl_-;_ﬂ +Tcosu’
p=(r+z)sin%,

from which we easily get (4.1). The theorem is proved. O
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4

As

A

FIGURE 4. 1-bicentric hexagon symmetric with respect to z-axis
From rationalization of (4.1) we get

4 1 _ 1 ’ 5 1 1 el
! ((r+z)2 (r—z)2> A ((7’+z)2+(r—z)2) +=0, @2)

which can be written as Fuss’ relation (1.3).

Remark 4.2. Using Poncelet’s closure theorem it can be easily proved that a 2-
bicentric hexagon is in fact a ”double triangle” (Figure 5). The proof is as follows.

Since n = 6, starting form a point A; on Cy, the point A; must be A;. But
if the radius of incircle is less or greater than the radius of the incircle shown in
Figure 5, then we have the situation shown in Figure 6.a. or that shown in Figure
6.b., respectively. Thus, in each of these two cases the corresponding traverse can
not be closed. Accordingly, the relation between r, p, and z for 2-bicentric hexagon
is given by Euler’s relation 2rp = r? — 22,

Corollary 4.3. It holds
3(r* - z2)2 > 4p? (r* + %), (4.3)

V3 (r* - 2:2)2 > drzp®. (4.4)
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>

FIGURE 5. 2-bicentric hexagon, i.e. "double triangle”

Ay Aq
1
o M As
A, As
As
a. smaller radius b. greater radius

FIGURE 6. two possible cases depending on the radius p of the incircle
Proof. From (4.2) we have

> () + (7))

which can be written as (4.3).
From (4.2) we have

which can be written as (4.4). a
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5. SOME RELATIONS CONCERNING BICENTRIC HEPTAGONS
Since 751 = 3, there is k-bicentric heptagon for k = 1,2, 3.
2 ptag

Theorem 5.1. The relation between r, p, and z for 1-bicentric heptagon can be

written as
2
p 2 r—2-=p p T+z+p
1-— \/ - v/ =
T+ 2z 2r r+z 2r
5 2
( p ) ( fr=g=p P ) 1
r—z 2r T+ 2z
2 2 .
<P> ,/1_<P>_/T_iﬂ 6
r+z rT+z 2r .

Proof. Let A; ... A7 be a 1-bicentric heptagon which is symmetric in relation to
axis ¢ as shown in Figure 7, and let

Al (—T‘,O) ) Ai+1 ('l"COS(p,-,rsirupi) 7i:1a2)3'

Ao

A;

FIGURE 7. 1-bicentric heptagon
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Then distances of the point M (z,0) from the lines A; As, Az A3, AsA4, and
Ay As are given by

p=(r+z)sin %, (5.2)
_ P1— P2 p1+ P2
p=rcos ——= + zcos ————, (5.3)
2 2
. P2 — 3 P2 + 3
p =Tcos ——— + 208 ————, (5.4)
2 2
p = —2z+TCOSP3. (5.5)

The relations (5.3) and (5.4) can be written as
2 ((r — 2z)sin %]—) 3

— cos 22 LY | gin P2
p = Cos 5 ((r+z)cos 2)+sm 5
P2
2

p= cos% ((r+z) cos %3—) + sin

((7‘ — z)sin %) ,

from which it follows that cos % = %L, sin -“—’23 = %1, where
(r+z)cos% (r—z)sing

D= (
{(r+2z)cos 2t (r—2z)sin

b/

p (r—z)sing
p (r—=z)sing

Dlz‘ ’ 2=

(r+z)cosg p
(r+2)cosg: p |

Using the equality cos® £2 + sin? %2 =1 and the relations (5.2) and (5.5), we get
(5.1). The theorem is proved. O
After rationalization and factorization of (5.1), we get
(r® = 3r*2% + 3r%2* — 28 4+ 2r%p — 41327 p + 2r2%p — 4r*p? + 4r?22p% —
8r22p%) (r'? — 671022 + 15782* — 20r%2°% + 157128 — 672210 + 212
4rtp +20r92%p — 40r7 24 p + 40r° 28 p — 201328 p + 4r210p — 47100 +
16r822p% — 247524 0% + 16912502 — 4r228p% + 879p% — 48r524p% +
6473283 — 24r28p® — 16r52%p* + 32r12%pt — 160225p% — 32r°22p° +
32r2%p° + 64r*2%p%) = 0.

Theorem 5.2. The relation between r, p, and z for 2-bicentric heptagon can be

writlen as
= 2
/1_< p ) /r—z+p+ p [r+z—p &
T+ 2z 2r T+ 2z 2r
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A

] As

Al/ A6~

As

"

FIGURE 8. 2-bicentric heptagon symmetric with respect to z-axis
p N2 fr=zxp, » \
(%) ( ; ) +
r—z 2r r+z
2
r \’ p \° [r¥z-p
1-— —y\/—— | . (5.6
<r + z) (r + z) 2r (56)

Proof. Let A; ... A7 be a 2-bicentric heptagon which is symmetric in relation to
axis z as shown in Figure 8, and let

Al (—T', 0) ’ ‘4i+1 (T COSSOhTSin(pi) ) 1= 17273‘

Then
p= (r+z)sin%,
p= —rcos—('g1 — -1-zcos————"01 +(‘02,
2 2
p=rcos—"02;(p3 —zcos—('o2+(’03,

p =z —TCOSp3,

from which, in the same way as in Theorem 5.1, we get (5.6). The theorem is
proved. O
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After rationalization and factorization of (5.6) we get
(r+z—p)* -2+ 21"/))3 (r8 — 3r%22 + 3r22* — 25 — 2r®p + 4r®2%p—
orztp — arip? + 4222 p? + 8r2%p%) (r'? — 6r102% + 157%2* — 20r°2%+
157428 — 672210 + 212 4+ 471 p — 207°2%p + 401" 2% p — 407°2%p + 201328 p—
4rz'%p — 4r10p? + 16r822p? — 247524 p% + 1671289 — 4r%28p — 8r%p°+
48r%2%p% — 64r°2%p° + 24r28p° — 16r822p* + 32r2%p* — 167228+

32r°2%p° — 32r25p° + 64r2%p%) = 0.

FIGURE 9. 3-bicentric heptagon symmetric with respect to z-axis

Theorem 5.3. The relation between 7, p, and z for 3-bicentric heptagon can be

written as
2
/1_< P )2 [r—z—p p [r+z+p _
r+z 2r T+ 2z 2r
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2 r—z— ’
( P ) ( p,_P ) g
r—2z 2r r+z

2 2 ?
(P) ‘/1_(P>+/r+z_+ﬂ 6T
r+z r4z 2r

Proof. Let A; ... A7 be a 3-bicentric heptagon which is symmetric with respect to
z-axis as shown in Figure 9, and let

Al (—1",0) ) Ai+l (TCOS%,TSinSOi) ’ = 1’2)3'

Then
g= (r+z)sin%,
p Lo _TCOSW _+. Z COS M’
p:rcos(pz = —zcos<P2+<'03,
2 2
p = —Zz+ rcCosys,
from which we get (5.7). The theorem is proved. 0O

After rationalization and factorization of (5.7), we get
(r+z4p)*(r2—22- 2rp)3 (r® = 3r12% + 3r°2" — 2% + 2r%p — 4322 p+
2rztp — 4rtp® + 4r?2%p? — 8rz2%p%) (r'? — 6r'%2% + 15r%2* — 207825+
157428 — 612210 + 212 — 4711 p + 20122 p — 40r7 2% p 4 40r°28p — 207328 p+
4720 — 4r1%0% 4 16r822p% — 24752%p? 4 1674280 — 4r?28p? 4 8r%p3—
48752%p® + 641328 p% — 24728 p% — 16r%22p* + 321 2% pt — 16r225p" -
32r°2%p° + 32r2°%p° + 64r*2%p%) = 0.
6. SOME RELATIONS CONCERNING BICENTRIC OCTAGONS

Here will be in short about bicentric octagons since there is a great analogy
with what we said about bicentric heptagons. Namely, in the same way as for
1-bicentric heptagon and 3-bicentric heptagon we find that for 1-bicentric octagon
and 3-bicnetric octagon hold the following relations

(6% — tmtn)’ = (1%)2 (o — qtm)” + (§>2 (ap — ptm)?, (6.1)

2 2
(0* = tmtn)” = (g) (pp+ qtm)” + <—§> (gp + ptm)?, (6.2)

where p=71+2,q=1— 2z, tm = /¢ — p?, tm = \/p? — p°.
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It may be interesting that each of the above two relations has the property
that after rationalization and factorization we get the same relation which can be
expressed as

[(pz (p2+q2) —p? ) — 16p%¢* 4(;02—
P’) (¢ = )] [P’ = p* (P +¢)] =0.
Thus for 1-bicentric octagon and 3-bicentric octagon holds the following relation
(0* (* + ¢?) —p2q2) — 16ptqgtpt (p2 _pz) (qz —p2) =1,
which can be written as
_ 82214 g%t gplpl? 4 9854712 | 40p2 5212 5626 10 4
4822/)41"10 720% 2410 — 264p% 248 4 40p? 2518 4- 70281 — 12822,067‘8 +
12808 24r% — 56210r% + 40p228r% + 416p% 2878 + 12822 p8r% + 12852874 —
720720 — 264p" 2%t + 282"%r" + 48p21%r% +1280%20% — 82Mr? —
128p°%287% + 40p?212r? + 8p*2'2 4 216 — 8p?21 = 0. (6.3)

In accordance with what we said in Remark 4.2 in connection with 2-bicentric
hexagon, it is clear that Fuss’ relation for 2-bicentric octagon is the same as the
relation for bicentric quadrilateral.

7. SOME PROPERTIES CONCERNING K-BICENTRIC POLYGONS AND ONE
CONJECTURE

Let n > 3 and r and z, z < r, such that for every k € {1,2,...,[25]} there

exist a circle ka) = M (pi) inside of C, and k-bicentric n-gon whose incircle is
C{k) and circumcircle Cs, see Figure 10.

C,

FIGURE 10
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Remark 7.1. For any r and z such that z < r, in general it is not true that for
bicentric n-gons there exist all pg, k = 1,..., [25] as it is the case for k-tangential
n-gons (in which case we do not have r and z since tangential n-gon does not have
to be chordal), see Corollary 2.3. For example if n = 10, » = 5, and z = 4, there
are no p; and ps.

For convenience, in the following, we shall by p(n, k) denote the length of radius
of incircle of a k-bicentric n-gon. The case when k|n and k # 1 may be particularly
interesting. For example, according to what we said in the Remark 2.1 it is clear
that

p(6,2) = p(3,1).

Adpg Ay

FIGUure 11

In the same way can be seen

p(15,3) = p(5,1) , p(15,6) = p(5,2).
See Figures 11 and 12. Thus 3-bicentric 15-gon is in fact 3-fold 1-bicentric 5-gon,
but 6-bicentric 15-gon is in fact 3-fold 2-bicentric 5-gon.
Generally, the following theorem can be easily proved.

Theorem 7.2. Let k = pq, where p is the greatest common divisor of k and n.
Then

p(n, k) =p (%q) : (7.1)

Proof. By definition of k-bicentric n-gon it is clear that p-fold g-bicentric %-gon
is pg-bicentric n-gon, and by Poncelet’s closure theorem there is no a pg-bicentric
n-gon such that p(n, k) be different from p (%, q). The argumentation is the same
as that at Remark 2.1 for 2-bicentric hexagon. O



BICENTRIC POLYGONS 65

FIGURE 12

Let GCD(n, k) denotes greatest common divisor of a natural numbers n and k.

Corollary 7.3. It holds

pln,k) = p (g, 5. (7.2)

/

where d = GCD(n, k).

For example, let n = 20. Then k € {1,...,9} since 222 = 9. If k = 4 then
p(20,4) = p(5,1). In this case the corresponding 20-gon is 4-fold 1-bicentric 5-gon.

If k = 8 then p(20,8) = p(5,2). In this case the corresponding 20-gon is 4-fold
2-bicentric 5-gon.

If k = 6 then p(20,6) = p(10,3). In this case the corresponding 20-gon is 2-fold
3-bicentric 10-gon.

If GCD(n, k) = 1 then the corresponding n-gon is 1-fold k-bicentric n-gon. For
example, the octagon shown in Figure 13 is a 1-fold 3-bicentric octagon.

In connection with k£ € {1,..., [”7”1]} we shall prove the following theorem
(which may be interesting in itself).

Theorem 7.4. The number of elements in the set {1,..., ["T*l]} relatively prime

ton is @, where o(n) is Euler’s o-function.

Proof. We have to prove that for every positive integer m the following two asser-
tions are true:
In each of the sets

{,2,...,m} , {m+1,m+2,...,2m} (7.3)

there are equal number of elements which are relatively prime to 2m + 1.
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In each of the sets
{1,2,...,m} , {m+1,m+2,...,2m,2m + 1} (7.4)

there are equal number of elements which are relatively prime to 2m + 2.
For the first assertion it is enough to prove that

GCD(k,2m+1)=d o GCD(2m+1—-k,2m+ 1) =d.
The proof is easy, namely, from
k=pd , 2m+1=qd

it follows that 2m + 1 — k = (¢ + p)d. Thus, each divisor of k and 2m + 1 is also
a divisor of 2m + 1 — k. The converse is also valid since from

k=ad , 2m+1-Fk=1bd,

it follows that 2m + 1 = (a + b)d.
In the same way can be proven the second assertion. O

Corollary 7.5. If n is odd and 5% is even, then in the set {1,...,251} there
are f@ even integers which are relatively prime to n. If n is even and ”7‘2 is

even, then in the set {1,..., "T"Z} there are 91%'—’1 odd integers which are relatively
prime to n.

Let us say something about Fuss’ relation for &-bicentric n-gon.
Although Fuss’ has found relations between r, z, and p only for bicentric n-gon,

4 <n < 8, it is in his honor to call such relations Fuss’ relations also in the case
when n > 8.
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Thus, intuitively, Fuss’ relation for a k-bicentric n-gon would be an equation
between 7, z, and p such that p, , = p(n, k) is its root, where r and z are given
(fixed) such that r > z.

The important property of any relation called Fuss’ relation is that it has the
property that pg ., is its root for k = 1 and n = 3,4,5,6,7,8. We get Fuss’
equations from rational equations which have pj , as one of its positive roots.
For example, such rational equations are (5.1), (5.6), and (5.7) for k-bicentric
heptagon, k = 1,2, 3, respectively. This gives us motivation for general definition
of Fuss’ relation. Let us first introduce some notation and well-known notions
from general algebra.

Let Q(r,z) denotes the smallest field obtained by adjunction of the real num-
bers 7 and z to the field @ of rational numbers, and F(n,k) be the irreducible
polynomial in variable p over Q(r,z) which has pj , as one of its roots and all
its coefficients are multiples of whole numbers and potentials of r and z without
common divisors.

Remark 7.6. Since we get polynomial F'(n, k) in p from the minimal polynomial in
Q(r, z) with root pi , by multiplying it by the common denominator of all rational
numbers in its coefficients, it is obvious that such polynomial is unique.

Remark 7.6 and previous considerations make the following general definition
of Fuss’ relation natural.

Definition 7.7. Relation F(n,k)(p) = 0 is Fuss’ relation for k-bicentric n-gon,
shortly written as F(n,k) = 0.

Here are some examples.

F(5,1) =78 = 3r22 + 3r22% — 28 + 2r%p — 4r322 +

2rztp — 4rtp? + 4r?2%p? — 8r2%p°,

F(5,2) =718 — 3r%2% 4+ 3r22% — 25 — 2r5p + 4r32%p —

2rztp — 4rip? + 4r?22p? + 8r2%p3,
F(6,1) = 3r® — 4r75p% — 127522 4+ 18r%2% + 4r*22p% — 127225 —

16r222p* 4 4r22%p? 4 328 — 4252,

F(6,2) =12 —2rp — 22.

Thus, F(6,2) = F(3,1). (See (3.5), (3.14), (4.2), and (1.6).)
The following theorem is a corollary of Theorem 7.2.

Theorem 7.8. If k = pq and p is the greatest common divisor of k and n, then

HmM=F<%O. (7.5)
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For example:

F(20,2) = F(10,1) , F(20,4) = F(5,1),

F(20,6) = F(10,3) , F(20,8) = F(5,2).

The equations F(n, k1) = 0 and F(n, kz) = 0 may have two or more roots in
common, and it is often so. For example, F(7,1) = 0 and F(7,3) = 0 have the
same roots since

F(7,1) = F(7,3) = 712 — 6r192% 4 15782% — 200528 + 15028 — 612210 + 212 —
471 p 4+ 20r°2%p — 407" 2% p + 407528 p — 207328 p + 4rz'% — 4r1%?2 + 161822 p% —
247824 p? + 16r*25p% — 4r228p? 4 8r%p3 — 4815 2% p® + 64132893 — 24r28p® —

16r822p* + 32riz%p* — 16r228p* — 32r522p% 4 32r2%p° + 64r12%p%.  (7.6)

See the corresponding rational expressions for (5.1) and (5.7).

Now we can state the following conjecture.

Conjecture. Let’s take 1 and j to be odd integers in set {1,... [@5_1]} such
that GCD(i,n) = GCD(j,n) = 1. Then F(n,i) = F(n,Jj).

Let’s take u and v to be even integers in set {1,... [%51]} such that GCD(u,n) =
GCD(v,n) =1. Then F(n,u) = F(n,v).

Here are some examples which strongly suggest the above conjecture.

Ezample 1. By (7.6), we have F(7,1) = F(7,3).

Example 2.

F(8,1) = F(8,3) = 7% — 82201 — 8p?r!t 4 8p*r!2 4+ 282%r12 + 40p22%r!2 —
5628710 4 482%p*r10 — 72p? 2410 — 264p* 248 4 40p? 257 + 70288 —
12822 p%r® + 128p%2%r% — 5621976 + 40p%2876 + 416p%2r° +
12822 p%r® + 128p828r% — 720221074 — 264p%28r* + 28212r* + 48421072 +

128082872 — 821492 — 128052812 + 40022122 4 8p*212 4 216 — 8p?214.

Ezxample 3. By checking the equation given in [9, pp. 77] and using relations for
2-bicentric 9-gon and 4-bicentric 9-gon, both of them symmetric with respect to
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z-axis (as pentagons in Figures 2 and 3), we get
F(9,2) = F(9,4) =
18 _ 6pr'7 — 922116 4 8p3r1% 4 4822pr!5 + 362%r! — 1682 pr'® + 822313 —
8425112 — 9622 p*r'? 4 3362%pr!! — 322%p5r!! — 2162%p%r!! + 256225710 +
12625710 + 480p* 24710 — 3221p°r® — 42028 pr® + 68023 — 960p*28% —
512082478 — 12621978 — 25622 p%r® — 100028 p®r™ — 1282%p"r™ + 3362 %pr" +
44825517 + 8421278 4 960 281% — 83228 p5r5 + 38425p71° — 168212 pr° +
7922'0p3r° — 480p% 2107 — 3621474 + 5120%2%r* + 5122%p°r® + 6082'%p%r% —
38428p7r% — 328212313 + 4821 pr® — 256p°21%7% + 25608281 + 921572 +
96p* 21212 — 6218 pr + 5621 p3r + 1282'%p"r — 160212 p%r — 218,
Ezxample 4. By checking the equation given in [9, pp. 78] and using relations for

1-bicentric 10-gon and 3-bicentric 10-gon, both of them symmetric with respect to
z-axis, we get

F(10,1) = F(10,3) = 572 — 20p°r?% — 6022722 + 3302%r%° + 180p%2%r*° +
16p4 20 110026 18 0422 4 18 700p2 4 18 +1872p4 4 16+
11522251 4 247528710 4 1500p2287¢ — 5760p82%r!* — 5952p%2%r14 —
3960210714 — 1800p%28r1* — 179222p%r!* + 4620212712 + 84092210712 +
103680828712 + 11424 28712 + 102422p'0r'% + 3328824712 + 840p% 21210 —
5760p% 28710 + 281682610 14112p4 10,10 _ 3960214710 + 11424p% 2128 —
1800p? 21478 — 870482878 — 5760p%21%r8 + 247521618 — 1024p'025r8 —
11002'87% 4+ 4096p'225r% + 10368p° 2128 — 1024p'°2%r% + 281682106 —
5952p1 2% + 15000221618 4 33288 212r* + 3302201 4 1872p% 21674 —
7000?28 — 5760p% 2147 + 180p?2%0r2 — 6022212 — 17920521472 +
10241921272 + 11520521592 — 304p%2187% 4 16p* 220 — 2002222 + 5224,
Example 5. By checking the equation given in [9, pp. 97] and using relations for
k-bicentric 11-gon, k = 1,2,3,4, 5, symmetric with respect to z-axis, we get
F(11,1) = F(11,3) = F(11,5) = —13% 4 6pr?® 4 152228 4 12p?r?8—
320327 — 8422 pr?" — 1052426 — 156p2 2026 — 16pr26 + 32p5r25+
2802%p%r% + 5462 pr?® + 4552012 + 2402%p*r?t + 936p2 224 —
218425pr?3 — 8642%p3r2 4 38422 %% — 3432p%2%r%% — 140822522 —
1584p% 27?2 — 136528r2% — 50882 p°r?! — 17922%p"r?! + 600628 pr?' +
1762°p°r*! + 124802 pb72° + 300321%r2° 4+ 61602 p*r20 + 85802% p*r20+

48642 p®r?° + 704028 p®r'® + 307222110 + 2272028 %719 + 112642%p7 1 —
120122'%pr!? — 489602% p%r'® — 1544421092118 — 5005212r'® — 2764824 p®r18 —
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716822p 0718 — 1584028 ptr!® — 5472028 p5r1" + 18018212 pr7 — 204822 p 17—
26136210317 — 264962%p"r!" — 122882* p°r" + 28512210p%r1® + 6435214718 +
11136028 p%r16 +4096z2 12,16 4 5760025316 + 205922'2p%r16+
204802 p!0r16 4+ 52800223715 + 122882° %71 — 2059221 prlo+
2150428p7r'5 + 78336210p°r1® — 369602 2p*r!* — 1612802105714 —
6435216714 12288z6p1°r14 20592214 p?rtt — 3763228 p8r14 +
2457628 p' 1713 + 1801821 pr!3 — 63168212 p5r1% — 7075221 p3r13 4
215042107713 + 1280028 pr1® — 4838421098112 4 153216212 p5r12 +
50052 8712 4+ 409625 p 2112 + 512028 p'071% + 1544420 p?r12 +
34848214 p%r12 — 33792210 %11 +14976214 Srll 4 66528218 p3r!1 —
1638425 p1371! — 12012218 pr!! — 64512212p7 71 — 5734428pM 11 —
2376026 p*r10 — 8580218 p2r1® — 563202101010 + 1128962128710~
1638428 p'4r10 — 3003220710 — 940802 p®+10 — 2867228 p' 2110 + 3276828 p' %1% +
600622°pr® + 59136214 p7r° + 19968212 p%r° — 4444028 p®r® + 24480216 p5r°+
2457628 p3r° + 55296210 11° + 34560216 p%r8 + 3432220p%r® + 1144021878+
1365222r® 4+ 104448212p1%78 — 91392214 8% — 24576212 p 1 r" — 21504216 p"r" -
30080218 p°r7 + 204821 p°r7 — 2184222 pr™ 4 2076822°pr" + 45056212 p'2r% +
34560216 p8r% — 71680214 p1%r® — 3696220p"r — 93622%pr® — 5760218 pSr6 —
4552%4r% — 6480222 p3r® + 40962 p!1r5 — 230428715 — 8192212p'3 15 4
16032220 p5r® — 460821 p°r> + 546224 pr® — 4608218 p8r* — 3202%0p5r* +
1052267% + 720222 pr* 4 1740821 p'0r* + 16384212p1r?* 4 156224 p%r% —
245762 p12r* + 1216224 p3r® — 84226 pr3 + 409622 p7r® — 4416222 p°r3 -
64224 p*r? + 192222 p%% — 12226 p?r? — 25622051 — 1522892 896z22p7r+
5122200%r + 512z24p51' + 6228 pr — 10422 p%r 4 28
F(11,2) = F(11,4) = 730 + 6pr2? — 1522r28 — 12p%r28 — 32p%r 27 — 8422pr%" 4
10524728 + 156p22%1%% + 16p*r2% + 32p°r?° + 28022 p%r? + 5462% pr?° —
45525724 — 24022 p*r?4 — 936p22%r2t — 21842%pr2% — 8642%p3r23 4 38422523 4
3432p% 25722 + 1408228722 + 1584p%2*r?? + 136523122 — 508824 p>r? —
179222 p7r*' + 600628 pr*' + 1762%p%r* — 124802%p®r?° — 3003210720 —
61602°p*r2® — 858028 p?r?0 — 486422p8r2° 4 704028 p*r!® + 30722%p%r1%+
2272028 p°r1% 4 112642%p"r!® — 1201221%pr1° + 4896028 p8r18 +
154442'° %718 4 5005212118 4+ 276482 pBr18 + 716822 p0r18 +
1584028 pr1® — 5472028 p°17 + 18018212 pr!" — 204822 p' 1117 —
2613621003717 — 2649628 p7r17 — 1228824 p%r17 — 28512210 pt 716~
64352'r1% — 11136028 p°%r!6 — 409622 p2r18 — 5760028 pBr1¢ — 20592212 %516 —
204802*p0r'® + 5280022 p%r1% + 1228826 p%r1® — 20592214 pr1®+
2150428 p"r!5 4 783362'°p°5r® + 36960212 p*r!* + 1612802108714 +
643520114 + 122882510714 4 20592214 p?r1* + 3763228 pPrii+
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2457628 p'1r1% + 1801821 pr!3 — 63168212 p°r1% — 7075221 p3r 13 +
2150421097713 + 1280028 p°r!3 + 483842108712 — 15321622012 -
50052'8r12 — 40962%p1%r12 — 51202810712 — 15444216212 -
34848214 p*r1? — 3379221%p%r1! + 1497621 51! + 6652826 p*r!t —
1638428p13r11 — 1201228 pr1! — 64512212p7r!! — 5734428 p 1111 4
237602154110 + 8580218 52110 + 5632021°p10r10 — 1128962128710+
16384254710 4+ 3003220710 + 9408021 p%r10 4 2867228 p'2r10 + 3276825p'%r% +
6006220 pr® + 5913624 p"r? + 19968212 %1% — 4444028 p3r® + 2448026 p°r° +
2457628 p*3r° 4 55296210117 — 34560216 p%r8 — 3432220p%r® — 11440218 p*r8 -
1365222r® — 1044482'2p1%78 + 9139221 p¥r® — 24576212 p 17 — 2150426 p"r"
3008028 p°r7 + 20482 p°r7 — 2184222 pr 4 2076822°p3r" — 450562'2p' 256 —
34560216 p876 4 716802 p'%r% + 369622°p*rS + 93622%p?r® + 576028 pSr6+
4552248 — 6480222375 + 4096214 p' 115 — 23042189715 — 8192212p13r% +
16032220 p5r® — 4608216 %75 4 546224 pr® + 460828 p®r* + 32022084 —
1052%6r* — 720222 p*r* — 174082'%p10r* — 163842%p'r* — 156224 p?r* +
24576214 p12r* + 1216224 p3r® — 84226 pr® + 40962%20p"r® — 4416222 p°r3 +
64224 pir? — 192222 p%72 + 12226p2r2 + 25622°p%r2 + 1522872 — 8962%22p"r+
512220p%r + 512224 p%r + 6228 pr — 104226 p3r — 2%,

Ezample 6. By checking the equation given in [9, pp- 99] and using relations for
1-bicentric 12-gon and 5-bicentric 12-gon, both of them symmetric with respect to

z-axis, we get
F(12,1) = F(12,5) = r32 — 16p%*r% — 1622r%° + 20822 p%r?® + 1202*r28+
16p*r?® — 12322p%r% + 224z2p41‘26 5602°r%° + 18202°r% — 17922%p%r* —
3920z*p*r?* + 43682°p%r?* + 161282 p%r?? — 43682'%r%? + 58882°p°r?? —
101922°p°r** + 237442°p*r?? — 825442°p*r?° — 81922%p'%r*0 4
160162°p%r2° — 409602* p*r*° — 627202°p°r2° + 80082'2r* — 160162'2p*r'®+
1897282'%pr1® — 1144027 + 1216002°p°r'® + 40962°p"*r'®+
1344002°p°r'® + 286722 p'%r'® — 3067682'2p*r'® — 1612802'%p°r'® -
2048002°p°r'® + 128702'%r'° — 204802°p'°r'® + 68642 p°r!® — 40962 p'*r'®+
7526422 p%r!* 4 2329602'%p°r'* — 286722%p"0r!* + 573442 !0~
114402'%r'* 4 68642 p%r!* + 3590402 p*r!* + 286722'%p'0r 1% +
752642 por'? — 160162'° p>r'? + 80082°r'? — 22937622 p%r!? —
3067682 p*r'? — 655362°p"r'? — 2580482°p'*r'? — 1612802 p°r'0+
4014082'°p'?r1? 4-160162°°p*r'® + 655362° p'171% — 4368272110+
286722'%p'%r1? + 23296024 p°r' + 1897282'%p*r'% + 655362°p 10—
655362°p'°r® + 1820;:24 ¥ +655362'p"r® — 286722 p'%r® + 13440028 p°r® -
825442*°p*r® — 2580482'%p'?r® — 101922p°r® — 2048002 p®r®+
1216002'°p®r® — 655362'2p'*r® — 204802'°p'°r® — 627202%°p°r® -
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56022678 + 573442149218 4 655362100188 + 23744222 p*8 + 4368224 p%r8—
409602%20p87* + 28672218 p'07* + 16128222 p%7* + 1202%8r* — 409626 p' 2 -
1232226 p%r* — 3920224 p*r* +224z26p4r2+4096z18 1202 __ 81922201092
1623012 — 1792224 p5r2 + 5888222 p872 + 208228 p%r? + 16228 p* 16230,)2 + 28
If our conjecture is true, it would further hold
F(13,1) = F(13,3) = F(13,5) , F(13,2) = F(13,4) = F(13,6),
F(14,1) = F(14,3) = F(14,5) , F(15,1) = F(15,7),
F(16,1) = F(16,3) = F(16,5) = F(16,7),
and so on.

We consider that the reason why it is so lie in the following fact concerning
relation (2.3), that is, 81 + -+ -+ fBn = (n — 2k) 5. So, for example, we have that

sin (13 — 2k) 3 T =-1for k=1,3,5,

sin (13 — 2k) g =41 for k =2,4,6,
cos (14 — 2k) 721 = 41 for k=1,3,5,
cos (14 — 2k) f =1 for k=2,4,6.

The situation in the case when GC’D(k,n) = 11is a quite different from that
when GCD(k,n) > 1 since then (n — 2k) § can be written as k (% —-2) =

We have tried to prove this conjecture, but (at least for the time being) we have
not achieved success.

Remark 7.9. In this paper we restrict ourselves to the case when one circle is
inside of the other. The case when one circle is not inside the other may also be
interesting.
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