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ABOUT ONE RELATION CONCERNING TWO CIRCLES,
WHERE ONE IS INSIDE OF THE OTHER

MIRKO RADIC AND ZORAN KALIMAN

Abstract. The following theorem and some of its corollaries will be proved.

THEOREM 1. Let Cy and Cy be any given two circles such that C is inside of
the Cy and let Ay, As, A3 be any given three different points on Cy such that

there are points 77 and 75 on C; with property
|,41Ag| =1t + to, IAQA;;I =12 + 13, (1&)

where
tl — |A.1T1| 5 t2 = |T1A2| N t3 = |T2A3| . (1b)

Figure 1
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Then
|A1As| = k(ty + t3), (2a)
where
2rR
k= o (2b)

r = radius of C, R = radius of Cs, d = |10|, I is center of C; and O is center of
Cs. (See Figure 1.)

Proof. First we prove how ¢5 and ¢35 can be expressed it ¢; is given. (See Figure
2.) For this purpose we prove the following lemma.

Lemma 1. If t; is given then ¢y can be calculated using the expression

t1(R? — d®) + VD,
(t2)12 = 5T
’ 7+ 1]

where
Dy =5(R* = d*P + (¢ + £8) [4R*d® — ] — (R* + d* — r2)2] : (3b)
Proof. From rectangular triangles A, IT) and A, IT) it follows
+r’=(—d)? +¥? =R>+d®—2dn;, 824+’ =R>+d*—2dzs (4)

or

po— BB -r?+d oo 3+ RI—r"+d 5)
e 2d no T 2d '

A(xy1)

Ay

Figure 2

Since for area of triangle A; A5 it holds
(t1 + 2)"r% = [z1(y2 = 0) + 22(0 — 1) + d(y1 — 2)]°, (6)
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we can write

(t1 +t2)*r® = [y1(d — 22) — ya(d - ml)]z ’ (72)

4y1y2(d — 21)(d — 22)] = [y7(d — 22)* +y3(d — 21)* — (t2 + t2)*r?]*.  (7h)

The above equation using the expressions y? = R* — 22, yZ = R* — 23, and (5)
can be written as

F-[(r2 + 2)t2 — 2t1t2(R? — d?) —AR?&> +r?83 + (R* +d® — r®)?] =0, (8a)
where ‘
F =(t; +t)*

(4atr2 + 821" + 47 — 8PP R® — 8 R? + 4R + d'83 + 2%
+ 57412 — 2d° R%2 — 6r2 R%t2 + RY2 + rt} — 2d*t1ty — 12d°r 11t
— 2rtt ty + 4d? Ryt + 472 Rty 5 — 2Rty — 2d%t3t, — 2083ty
+ 2R%*83t, + d*ty? + 2d%r%t,? + 5r*ty® — 2d° R%t,? — 612 R%ty?
+ Ry% + 4?8252 + 67283152 — AR%121,2 + thte? — 241113
— 29211153 + 2R2t1 153 — 23153 + 12ty + tftf). (8b)

It is not difficult to see that the factor F' has no geometrical meaning important
for our theorem, i.e. we get the following equation for ¢,

(r® + 1)t; — 2t112(R* — &°) — 4R’ + 1} + (R* + &> = r*) =0.  (9)
Thus, we have

t1(R? — d?) + /Dy

(t2)12 = o (10a)
where
Dy = t(R* — d®)* + (r* + 1]) [AR*d® — v’} — (R* + d&* — r?)?]. (10b)
(The length (t2); in Figure 2 is denoted by t5.) O
First from Figure 2 we see that
|41 As|® = (t1 +t2)? + (t2 + 3)® — 2(t1 + t2) (2 + @)%;—:z, (11a)

since

ol b

1 — tan? 5, 1_< )2 2 — 2
cos 23 == =2 (11b)

':1+tan2,8~2_1+( )2_t§+r2'

Sl
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The tangent length t» = (¢2); is given by (10) and tangent length t3 can be
written as

t2(R? — d*) + /D,

= 12
" r? + 3 (128}
where
Dy = t2(R? — d%)% + (r* + 3) [4R%d®> — 1t} — (R® + d® = 1°)?] (12b)
First, we form the equation
s |A14s)?
R 13
(t1 +t3)? (13)

In this equation we have to eliminate square roots. We eliminate /D5 by solving
the equation (13) for v/D». Square of the solution we equate with the expression
for the D5, Eq. (12b). New equation is

a1/Dy + ag
n
where ag and a; are function of (R,r,d,t;). Terms ap and a; have common factor
d*k? — 2d°k*R? — 4r°R? + k> while the rest is still function of all variables
(R,r,d,t;). Evidently, the equation (14) can be valid (for all ¢;) only if common
factor vanish.
Using computer, it can be found that

k(ty +t3) — |A1 43| =0 & d*k? — 2d°k°R? — 4r’R> + K*R* = 0.  (15)

But, d*k* — 2d°k*R* — 4r’R? + k*R" = 0 if k = "%z. This proves Theorem

1, O

=0, (14)

Before we state some of its corollaries, let us remark that a polygon which is
both tangential and chordal, for short called bicentric polygon.
Corollary 1.1. Let Ay ... A, be a bicentric polygon. Then
lAiAi+2| o 2rR
ti +tigo T R2 -4’

i=1,...,n. (16)

Corollary 1.2. Let A, ... A, be a tangential polygon with property that there is
k > 0 such that

AjAir )

Liﬁ:le:k foreachi=1,...,n, (17)
where indices are calculated modulo n. Then this polygon is also a chordal one,
that is a bicentric n-gon.

Proof. Let Ay, Ay, A3z, A4 be four consecutive vertices of A; ... A, and let C5 be
circumcircle of the triangle A; As A3, R radius of C5 and r radius of C;. (Figure
3). We have to prove that A4 lies on Cy, that is ¢ = ¢;. Thus, we have to prove
that the situation is like this shown in Figure 3. The proof is as follows.
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Figure 3.

yposing that
IA],A;;I = k(tl + t3), |A2A4[ = k(t2 + t4), (18)
e the following two equations

t2 _,’.2

(t1+13)% = (1 +12)> + (t2 + t3)” — 2(t1 + t2) (B2 + tg)t—gw (19a)
2
oS 2 2 2 [
¢ (tg + t4) = (tg + t3) + (t3 -+ t4) — 2(t2 + t3)(t3 + t4)t—2:7r'§. (lgb)
3
e first we can calculated #; and from the second ¢4, so we have
+2 + 2taV/ D
b= ay t2\/5’ £y ay sV D (20a)
ny Tig

D = k(r? + 5)(r* +13) —r*(t2 + 15)°,
ay = 2r%ts + 1ty — k*rPts — t3t3 — k*t3ts
ag = 2r’ty 4 12ty — k*r’ty — tats — ktatd (20Db)
ny = (r? +t2)(k* - 1)
(2 4 42V 32
ng = (T +t3)(k = 1)
cosp; and cos gy can be expressed as

—(tz + t3)2 + (tl + t2)2 + |A1A3i2
2(t1 + t2) | A1 43| ’
— (2 + t3)% + (t3 + ta)? + | A Ay)?
2(t3 + t4) | Az A4l
ssions for t; and ¢4 given by (20a), t; can be eliminated from (19a) and
9b), so that each of cosp; and cosps can be expressed only by ¢, and
r with Eq. (18) complex but straightforward calculation shows that
= C0S (2, that is ¢1 = a. O

COos 1 =
(21)

cos @y =
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