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ON FREQUENTLY HYPERCYCLIC C-DISTRIBUTION

COSINE FUNCTIONS IN FRÉCHET SPACES

MARKO KOSTIĆ

Abstract. In this paper, we analyze frequently hypercyclic C-distribu-

tion cosine functions in separable infinite-dimensional complex Fréchet

spaces. The notion of frequent hypercyclicity seems to be new even

for cosine operator functions in separable infinite-dimensional Banach

spaces (real or complex). Our results, formulated also in terms of global

fractionally integrated C-cosine functions, are illustrated with several

instructive examples.

1. Introduction and preliminaries

The class of frequently hypercyclic linear continuous operators on sepa-

rable Fréchet spaces was introduced by F. Bayart and S. Grivaux in 2006

([2]). We can freely say that the frequent hypercyclicity and various gen-

eralizations of this concept are the central objects of investigations in the

field of linear topological dynamics now (see [3]-[4], [6], [13] and references

cited therein for more details on the subject).

The class of frequently hypercyclic strongly continuous semigroups was

introduced by E. M. Mangino, A. Peris in [24] and further studied by E. M.

Mangino, M. Murillo-Arcila in [25], while the class of frequently hypercyclic

C-distribution semigroups has been recently introduced by the author in

[22], where some generalizations of this concept have been also examined.

Hypercyclicity and topologically mixing property for cosine operator

functions in Banach spaces have been analyzed by A. Bonilla, P. Miana

[5], T. Kalmes [15] and the author [21]. As mentioned in the abstract,

the notion of frequent hypercyclicity has not been yet considered for co-

sine operator functions in Banach spaces. The main aim of this paper

is to go a step further by analyzing frequently hypercyclic C-distribution
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cosine functions in separable infinite-dimensional complex Fréchet spaces.

We reformulate our results for fractionally integrated C-cosine functions,

providing also several illustrative examples, applications and open prob-

lems. The paper is very simply organized, containing two separate sub-

sections concerning C-distribution semigroups and fractionally integrated

C-semigroups in Fréchet spaces as well as C-distribution cosine functions

and fractionally integrated C-cosine functions in Fréchet spaces (Subsec-

tion 1.1 and Subsection 1.2); our main results are formulated and proved

in Section 2.

We use the standard notation throughout the paper. By E we denote a

separable infinite-dimensional complex Fréchet space. If Y is also a com-

plex Fréchet space, then by L(E, Y ) we denote the space consisting of all

continuous linear mappings from E into Y ; L(E) ≡ L(E,E). We will al-

ways assume henceforth that C ∈ L(E) and C is injective. Let A be a

closed linear operator with domain D(A) and range R(A) contained in

E, and let CA ⊆ AC. By σp(A) and N (A) we denote the point spec-

trum and kernel space of A, respectively. Set D∞(A) :=
⋂

k∈N
D(Ak). The

part of A in a linear subspace Ẽ of E, A|Ẽ shortly, is defined through

A|Ẽ := {(x, y) ∈ A : x, y ∈ Ẽ} (we will identify an operator and its graph

henceforth). Recall that the C-resolvent set of A, denoted by ρC(A), is

defined by

ρC(A) :=
{

λ ∈ C : λ−A is injective and (λ− A)−1C ∈ L(E)
}

.

In our framework, the C-resolvent set of A consists of those complex num-

bers λ for which the operator λ−A is injective and R(C) ⊆ R(λ−A). In the

sequel, we assume that any regularizing operator C, C1, · · · commutes with

A. By χT (·) we denote the characteristic function of set T. All operator

families considered in this paper will be non-degenerate.

The Schwartz space of rapidly decreasing functions S is topologized by

the following system of seminorms pm,n(ψ) := supx∈R |xmψ(n)(x)|, ψ ∈
S, m, n ∈ N0 (see [26] for more details about vector-valued distribution

spaces considered below). The Schwartz spaces D = C∞
0 (R) and E =

C∞(R) carry the usual topologies. For any ∅ 6= Ω ⊆ R, the symbol DΩ

denotes the subspace of D consisting of those functions ϕ ∈ D for which

supp(ϕ) ⊆ Ω; D0 ≡ D[0,∞). The space D′(E) := L(D, E) consisting of all

continuous linear function from D intoE carries the usual topology, whereas

the symbol D′
Ω(E) stands for its subspace containing E-valued distributions

whose supports are contained in Ω; D′
0(E) ≡ D′

[0,∞)(E). By δt we denote

the Dirac distribution centered at point t (t ∈ R). If ϕ, ψ : R → C are
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measurable functions, then we define ϕ∗0ψ(t) :=
∫ t
0 ϕ(t−s)ψ(s) ds, t ∈ R.

The convolution of vector-valued distributions will be taken in the sense of

[23, Proposition 1.1].

Let ζ ∈ D[−2,−1] be a fixed test function satisfying
∫∞
−∞ ζ(t) dt = 1. We

define I(ϕ) (ϕ ∈ D) through

I(ϕ)(·) :=

·
∫

−∞

[

ϕ(t)− ζ(t)

∫ ∞

−∞
ϕ(u) du

]

dt.

Then I(ϕ) ∈ D, I(ϕ′) = ϕ, d
dt
I(ϕ)(t) = ϕ(t)− ζ(t)

∫∞
−∞ ϕ(u) du, t ∈ R and,

for every G ∈ D′(L(E)), the primitive G−1 of G is defined by G−1(ϕ) :=

−G(I(ϕ)), ϕ ∈ D. We have G−1 ∈ D′(L(E)), (G−1)′ = G, i.e., −G−1(ϕ′) =

G(I(ϕ′)) = G(ϕ), ϕ ∈ D; moreover, supp(G) ⊆ [0,∞) implies supp(G−1) ⊆
[0,∞).

For any s ∈ R, we define dse := inf{l ∈ Z : s ≤ l}. Set gζ(t) := tζ−1/Γ(ζ)

for t > 0, where Γ(·) denotes the Gamma function (ζ > 0), and g0(t) ≡
the Dirac δ-distribution. Let α > 0, α /∈ N, f ∈ S and n = dαe. Then the

Weyl fractional derivative Wα
+f is defined by

Wα
+f := (−1)n d

n

dtn

∫ ∞

t

gn−α(s− t)f(s) ds, t ∈ R.

If α ∈ N, then we set Wα
+f := (−1)nf (n), f ∈ S.

Before we move ourselves to Subsection 1.1, we need to recall a few

definitions about lower and upper densities:

Definition 1. (i) Suppose that T ⊆ N. The lower density of T, denoted

by d(T ), is defined through:

d(T ) := lim inf
n→∞

|T ∩ [1, n]|
n

.

(ii) A linear operator A on E is said to be frequently hypercyclic iff there

exists an element x ∈ D∞(A) (frequently hypercyclic vector of A)

such that for each open non-empty subset V of E we have that the

set {n ∈ N : Anx ∈ V } has positive lower density.

Denote by m(·) the Lebesgue measure on [0,∞). The following continu-

ous counterpart of Definition 1 is well known in the existing literature (see

e.g. [24]):

Definition 2. Suppose that T ⊆ [0,∞). Then the lower density of T,

denoted by d(T ), is defined through:

dc(T ) := lim inf
t→∞

m(T ∩ [0, t])

t
.
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1.1. C-Distribution semigroups and fractionally integrated C-se-

migroups. Suppose that C ∈ L(E) is an injective operator, G ∈ D′
0(L(E))

and CG = GC. Then G is called a C-distribution semigroup, shortly (C-

DS), iff G satisfies the following two conditions:

(i) G(ϕ ∗0 ψ)C = G(ϕ)G(ψ), ϕ, ψ ∈ D;

(ii) N (G) :=
⋂

ϕ∈D0

N (G(ϕ)) = {0}.

If G satisfies only (i), then we say that G is a pre-C-distribution semigroup,

shortly pre-(C-DS).

Assume now that G is a (C-DS), T ∈ E ′
0, i.e., T is a scalar-valued distri-

bution with compact support contained in [0,∞). Define

G(T )x :=
{

(x, y) ∈ E × E : G(T ∗ ϕ)x = G(ϕ)y for all ϕ ∈ D0

}

.

Then G(T ) is a closed linear operator. We define the (infinitesimal) gener-

ator of a (C-DS) G by A := G(−δ′). By D(G) we denote the set consisting

of those elements x ∈ E for which x ∈ D(G(δt)), t ≥ 0 and the mapping

t 7→ G(δt)x, t ≥ 0 is continuous.

Definition 3. Let α ≥ 0, and let A be a closed linear operator. If there

exists a strongly continuous operator family (Sα(t))t≥0 ⊆ L(E) such that:

(i) Sα(t)A ⊆ ASα(t), t ≥ 0,

(ii) Sα(t)C = CSα(t), t ≥ 0,

(iii) for all x ∈ E and t ≥ 0:
∫ t
0 Sα(s)x ds ∈ D(A) and

A

t
∫

0

Sα(s)x ds = Sα(t)x− gα+1(t)Cx,

then we say that A is a subgenerator of a (global) α-times integrated C-

semigroup (Sα(t))t≥0.

If α = 0, then (S0(t))t≥0 is also said to be a C-regularized semigroup with

subgenerator A. The integral generator of (Sα(t))t≥0 is defined by setting

Â :=

{

(x, y) ∈ E ×E : Sα(t)x− gα+1(t)Cx =

t
∫

0

Sα(s)y ds, t ≥ 0

}

.

The integral generator Â of (Sα(t))t≥0 is a closed linear operator which

extends any subgenerator of (Sα(t))t≥0 and satisfies Â = C−1AC. We refer

the reader to [17] for the notion of an exponentially equicontinuous, analytic

α-times integrated C-semigroup in a general locally convex space.
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Let A be a closed linear operator on E. Denote by Z1(A) the space

consisting of those elements x ∈ E for which there exists a unique con-

tinuous mapping u : [0,∞) → E satisfying
∫ t
0 u(s, x) ds ∈ D(A) and

A
∫ t
0 u(s, x) ds = u(t, x) − x, t ≥ 0, i.e., the unique mild solution of the

corresponding Cauchy problem (ACP1) :

(ACP1) : u′(t) = Au(t), t ≥ 0, u(0) = x.

If A is a subgenerator of a global α-times integrated C-se-

migroup (Sα(t))t≥0 for some α ≥ 0, then there is only one (trivial) mild

solution of (ACP1) with x = 0, so that Z1(A) is a linear subspace of X.

The space Z1(A) consists exactly of those elements x ∈ E for which the

mapping t 7→ C−1Sdαe(t)x, t ≥ 0 is well defined and dαe-times continuously

differentiable on [0,∞), where Sdαe(t)x := (gdαe−α ∗0 Sα(·)x)(t), t ≥ 0,

x ∈ E; see e.g. [17]. Define

G(ϕ)x := (−1)dαe
∞
∫

0

ϕ(dαe)(t)Sdαe(t)x dt, ϕ ∈ D, x ∈ E (1)

and

G
(

δt
)

x :=
ddαe

dtdαe
C−1Sdαe(t)x, t ≥ 0, x ∈ Z1(A).

Then G is a C-distribution semigroup generated by C−1AC and Z1(A) =

D(G) (see e.g. [16], [18] and [19, Proposition 1.2]).

The notion of an entire C-regularized group will be taken in the sense of

[17, Definition 2.2.9]; cf. also the monograph [11] by R. deLaubenfels for

more details about C-regularized semigroups and their applications.

1.2. C-Distribution cosine functions and fractionally integrated C-

cosine functions. Let C ∈ L(E) be an injective operator, and let G ∈
D′

0(L(E)) satisfy CG = GC. Then we say that G is a C-distribution cosine

function, shortly (C-DCF), iff G satisfies the following two conditions:

(C −DCF1) :

G−1(ϕ ∗0 ψ)C = G−1(ϕ)G(ψ) + G(ϕ)G−1(ψ), ϕ, ψ ∈ D;

(C −DCF2) :

x = y = 0 iff G(ϕ)x+ G−1(ϕ)y = 0, ϕ ∈ D0.

If G satisfies only (C−DCF1), then we say that G is a pre-C-distribution

cosine function, shortly pre-(C-DCF).

We will use the following well-known result (see e.g. [27]):
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Lemma 1. Let G ∈ D′
0(L(E)) and G(ϕ)C = CG(ϕ), ϕ ∈ D. Then G is a

pre-(C-DCF) in E iff G ≡
(

G G−1

G′ − δ ⊗ C G

)

is a pre-(C-DS) in E×E,

where C ≡
(

C 0

0 C

)

. Moreover, G is a (C-DS) iff G is a pre-(C-DCF)

which satisfies (C −DCF2).

Assume G is a (C−DCF ) and T ∈ E ′
0. Then the (infinitesimal) generator

A of G is defined by

A := G(δ′′) :=
{

(x, y) ∈ E ×E : G−1
(

ϕ′′
)

x = G−1(ϕ)y for all ϕ ∈ D0

}

.

Then A is a closed linear operator on E, C−1AC = A and A ⊆ B, where

A ≡
(

0 I

A 0

)

and B is the generator of G, as well as (x, y) ∈ A ⇔
(

(

x
0

)

,
(

0
y

)

)

∈ B.

Definition 4. Let α ≥ 0, and let A be a closed linear operator. If there

exists a strongly continuous operator family (Cα(t))t≥0 ⊆ L(E) such that:

(i) Cα(t)A ⊆ ACα(t), t ≥ 0,

(ii) Cα(t)C = CCα(t), t ≥ 0,

(iii) for all x ∈ E and t ≥ 0:
∫ t
0 (t− s)Cα(s)x ds ∈ D(A) and

A

t
∫

0

(t− s)Cα(s)x ds = Cα(t)x− gα+1(t)Cx,

then it is said that A is a subgenerator of a (global) α-times integrated

C-cosine function (Cα(t))t≥0.

If α = 0, then (C0(t))t≥0 is also said to be a C-regularized cosine function

with subgenerator A. The integral generator of (Cα(t))t≥0 is defined by

Â :=

{

(x, y) ∈ E ×E : Cα(t)x− gα+1(t)Cx =

t
∫

0

(t− s)Cα(s)y ds, t ≥ 0

}

.

The integral generator of (Cα(t))t≥0 is a closed linear operator which is

an extension of any subgenerator of (Cα(t))t≥0. Furthermore, the integral

generator of (Cα(t))t≥0 is its maximal subgenerator with respect to the set

inclusion and we have Â = C−1AC. It is worth noting that if A is a sub-

generator of both a global α-times integrated C-cosine function (Cα(t))t≥0

and a global β-times integrated C1-semigroup (Cβ(t))t≥0 (α ≥ 0, β ≥ 0),

then (Cα(t))t≥0 and (Cβ(t))t≥0 share any frequent hypercyclic property

considered below; a similar assertion holds for integrated C-semigroups.
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Relations between (degenerate) C-distribution cosine functions and (de-

generate) integrated C-cosine functions in general locally convex spaces

have been recently investigated in [27, Section 3]. For our further purposes,

the following lemma will be sufficiently enough (see e.g. [27, Theorem 3.6]

and [17]):

Lemma 2. Let A be the integral generator of a global α-times integrated

C-cosine function (Cα(t))t≥0. Set

G(ϕ)x :=

∞
∫

0

Wα
+ϕ(t)Cα(t)x dt, ϕ ∈ D, x ∈ E.

Then G is a (C −DCF ) with the integral generator A.

The fundamental relation between fractionally integrated C-semigroups

and fractionally integrated C-cosine functions in locally convex spaces is

described as follows:

Lemma 3. (see e.g. [27, Lemma 5.1]) Suppose A is a closed linear operator

on E and α ≥ 0. Then the following assertions are equivalent:

(i) A is a subgenerator of an α-times integrated C-cosine function

(Cα(t))t≥0 in E.

(ii) The operator A :=
(

0 I
A 0

)

is a subgenerator of an (α+ 1)-times inte-

grated C-semigroup (Sα+1(t))t≥0 in E ×E, where C :=
(

C 0
0 C

)

.

In this case:

Sα(t) =

(

∫ t

0 Cα(s) ds
∫ t

0 (t− s)Cα(s) ds

Cα(t) − gα+1(t)C
∫ t
0 Cα(s) ds

)

, t ≥ 0,

and the integral generators of (Cα(t))t≥0 and (Sα+1(t))t≥0, denoted respec-

tively by B and B, satisfy B =
(

0 I
B 0

)

. Furthermore, the integral generator

of (Cα(t))t≥0, resp. (Sα+1(t))t≥0, is C−1AC, resp. C−1AC ≡
(

0 I
C−1AC 0

)

.

For the sequel, we need the following notion (see [17] for the Banach

space case). A function u(t) is said to be a mild solution of the abstract

Cauchy problem

(ACP2) : u′′(t) = Au(t), t ≥ 0, u(0) = x, u′(0) = y,

if the mapping t 7→ u(t), t ≥ 0 is continuous,
∫ t
0 (t− s)u(s) ds ∈ D(A) and

A
∫ t
0 (t− s)u(s) ds = u(t) − x− ty, t ≥ 0. It is well known that there exists

at most one mild solution of (ACP2) provided that there exists α ≥ 0 such

that A is a subgenerator of a global α-times integrated C-cosine function.

Denote by Z2(A) the vector subspace of E consisting of all x ∈ E for which
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there exists a unique mild solution of (ACP2) with y = 0. Let π1 : E×E →
E and π2 : E × E → E be the first and second projection, respectively,

and let G be a (C − DCF ) generated by A. Then Lemma 1(i) implies

that G is a (C −DS) generated by A and the solution space Z1(A) can be

characterized as in the former subsection. In order not to make any abbuse

of notation, the operator G(δt)
(

x
y

)

will be denoted henceforth by G1(δt)
(

x
y

)

,

for any
(

x
y

)

∈ Z1(A). We have Z1(A) = D(G) and the mild solution u(·;
(

x
y

)

)

of (ACP1) with initial value
(

x
y

)

∈ Z1(A) is given by u(t;
(

x
y

)

) = G1(δt)
(

x
y

)

,

t ≥ 0. Arguing as in the Banach space case, we may deduce that x ∈ Z2(A)

iff
(

0
x

)

∈ Z1(A) iff
(

0
x

)

∈ D(G), and u(t; x) = π2(G1(δt)
(

0
x

)

) = π1(G1(δt)
(

x
0

)

),

t ≥ 0, where u(·; x) denotes the mild solution of (ACP2) with y = 0. Define

G
(

δt
)

x := π2

(

G1(δt)

(

0

x

)

)

= π1

(

G1(δt)

(

x

0

)

)

, t ≥ 0, x ∈ Z2(A).

Then C(Z2(A)) ⊆ Z2(A), G(δt)(Z2(A)) ⊆ Z2(A), t ≥ 0 and for each x ∈
Z2(A) one has G(δt)Cx = CG(δt)x, t ≥ 0, 2G(δs)G(δt)x = G(δt+s)x +

G(δ|t−s|)x, t, s ≥ 0 and G(ϕ)x =
∫∞
0 ϕ(t)CG(δt)x dt, ϕ ∈ D0. Furthermore,

if A is a subgenerator of a global n-times integrated C-cosine function

(Cn(t))t≥0, then the solution space Z2(A) consists exactly of those vectors

x ∈ E such that, for every t ≥ 0, Cn(t)x ∈ R(C) and the mapping t 7→
C−1Cn(t)x, t ≥ 0 is n-times continuously differentiable (hence, Z2(A) =

Z2(A
′) if A′ is also a subgenerator of (Cn(t))t≥0). In this case, for any

x ∈ Z2(A) and t ≥ 0, we have G(δt)x = dn

dtn
C−1Cn(t)x. A similar statement

holds for global n-times integrated C-semigroups ([17]).

For more details about C-distribution semigroups, C-distribution cosine

functions, integrated C-semigroups and integrated C-cosine functions, the

reader may consult [1], [11], [16]-[23] and [27].

2. Frequently hypercyclic C-distribution cosine functions and

frequently hypercyclic fractionally integrated C-cosine

functions

Let P ([0,∞)) denote the power set of [0,∞). The following general def-

inition has been recently introduced for C-distribution semigroups in [22]:

Definition 5. Suppose that G is a C-distribution cosine function generated

by A and x ∈ Z2(A). Let F ∈ P (P ([0,∞))) and F 6= ∅. Then it is said

that x is an F -hypercyclic element of G iff for each open non-empty subset

V of E we have

S(x, V ) :=
{

t ≥ 0 : G(δt)x ∈ V
}

∈ F ;
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G is said to be F -hypercyclic iff there exists an F -hypercyclic element of

G.

This definition enables one to consider the notions of q-frequent hy-

percyclicity, upper q-frequent hypercyclicity, f -frequent hypercyclicity and

upper frequent hypercyclicity for C-distribution cosine functions and frac-

tionally integrated C-cosine functions in Fréchet spaces (see [22] for related

results established for the abstract differential equations of first order). In

the sequel, we will focus our attention to the usually considered frequent

hypercyclicity, only:

Definition 6. Let G be a C-distribution cosine function generated by A.

Then it is said that G is frequently hypercyclic iff there exists x ∈ Z2(A)

(frequently hypercyclic vector of G) such that for each open non-empty sub-

set V of E we have dc({t ≥ 0 : G(δt)x ∈ V
}

) > 0.

In the following definition, we reword this notion for fractionally inte-

grated C-cosine functions (see Lemma 2):

Definition 7. Suppose that A is a subgenerator of a global α-times inte-

grated C-cosine function (Cα(t))t≥0 for some α ≥ 0. Then we say that an

element x ∈ Z2(A) is a frequently hypercyclic element of (Cα(t))t≥0 iff x is

a frequently hypercyclic element of the induced C-distribution cosine func-

tion G defined through (1); (Cα(t))t≥0 is said to be frequently hypercyclic

iff G is frequently hypercyclic.

We continue by stating the following useful extension of [21, Lemma 32],

stated here for the operators acting on Fréchet spaces:

Lemma 4. Let λ ∈ C. Then λ ∈ σp(A) iff λ2 ∈ σp(A); if f(λ2) an eigen-

vector of A with the eigenvalue λ2, then F (λ) = (f(λ2), λf(λ2))T is an

eigenvector of A with the eigenvalue λ.

We also need the following result, proved recently in [22]:

Lemma 5. Let t0 > 0 and let A be a subgenerator of a global C-regularized

semigroup (S0(t))t≥0 on E. Suppose that R(C) is dense in E. Set T (t)x :=

C−1S0(t)x, t ≥ 0, x ∈ Z1(A). Assume that there exists a family (fj)j∈Γ

of twice continuously differentiable mappings fj : Ij → E such that Ij
is an interval in R and Afj(t) = itfj(t) for every t ∈ Ij, j ∈ Γ. Set

Ẽ := span{fj(t) : j ∈ Γ, t ∈ Ij}. Then A|Ẽ is a subgenerator of a global

C|Ẽ-regularized semigroup (S0(t)|Ẽ)t≥0 on Ẽ, (S0(t)|Ẽ)t≥0 is frequently hy-

percyclic in Ẽ and the operator T (t0)|Ẽ is frequently hypercyclic in Ẽ.
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The following result is closely connected with [21, Theorem 33]:

Theorem 1. Assume that α ≥ 0, A is a subgenerator of an α-times in-

tegrated C-cosine function (Cα(t))t≥0 on E and there exists an open non-

empty subset Ω of C such that Ω ⊆ ρC(A) and the mapping λ 7→ (λ−A)−1C,

λ ∈ Ω is strongly continuous. Let D(A) and R(C) be dense in E, and let

λ0 ∈ C be such that λ2
0 ∈ Ω. Define k := (dαe + χ2N+1(dαe))/2.

(i) Let there exist a family (fj)j∈Γ of twice continuously differentiable

mappings fj : Ij → E such that Ij is an interval in R and Afj(−t2) =

−t2fj(−t2) for every t ∈ Ij , j ∈ Γ. Set Fj(t) := (fj(−t2), itfj(−t2))T ,

t ∈ Ij , j ∈ Γ and Ẽ := span{Fj(t) : j ∈ Γ, t ∈ Ij}. Set

C :=

(

(λ2
0 − A)−kC 0

0 (λ2
0 −A)−kC

)

. (2)

Then the operator A|Ẽ is a subgenerator of a global ((λ0−A)−1C)|Ẽ-

regularized semigroup (S(t))t≥0 ⊆ L(Ẽ) on Ẽ, (S(t))t≥0 is fre-

quently hypercyclic in Ẽ and the operator (((λ0−A)−1C)−1)|ẼS(t0)

is frequently hypercyclic in Ẽ for any t0 > 0.

(ii) Let there exist an open connected subset Ω of C which satisfies

σp(A) ⊇ {λ2 : λ ∈ Ω} and Ω ∩ iR 6= ∅. Let f : {λ2 : λ ∈ Ω} → E be

an analytic mapping satisfying f(λ2) ∈ N (A− λ2) \ {0}, λ ∈ Ω, let

F (λ) := (f(λ2), λf(λ2))T , λ ∈ Ω and let Ẽ := span{F (λ) : λ ∈ Ω}.
Define C through (2). Then the operator A|Ẽ is a subgenerator of

a global ((λ0 − A)−1C)|Ẽ-regularized semigroup (S(t))t≥0 ⊆ L(Ẽ)

on Ẽ, (S(t))t≥0 is frequently hypercyclic in Ẽ and the operator

(((λ0 − A)−1C)−1)|ẼS(t0) is frequently hypercyclic in Ẽ for any

t0 > 0.

Proof. We will prove only (i). Since [16, Proposition 2.3.12] holds for in-

tegrated C-cosine functions in Fréchet spaces, the prescribed assumptions

imply that the operator A is a subgenerator of a global ((λ2
0 − A)−kC)-

regularized cosine function on E. Due to Lemma 3, we get that the operator

A is a subgenerator of a global once integrated C-semigroup on E×E. Since

[16, Proposition 2.3.13] holds for integratedC-semigroups in Fréchet spaces,

we may conclude from the above and the obvious facts R(C) ⊆ D(λ0 −A),

λ0 ∈ ρC(A) that the operator A is a subgenerator of a global (λ0 −A)−1C-

regularized semigroup (W0(t))t≥0 on E × E. Using the assumptions that

D(A) and R(C) are dense in E, it readily follows that the operator A is

densely defined as well as that R((λ2
0−A)−kC) is dense in E, which clearly
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implies that R((λ0 − A)−1C) is dense in E × E. Now the final conclusion

follows immediately by applying Lemma 4 and Lemma 5. �

Remark 1. (i) As in the Banach space case, an element x is a hyper-

cyclic vector of (Cα(t))t≥0 if
(

x
0

)

(
(0
x

)

) is a hypercyclic vector of the

induced C-distribution semigroup G. Observing that for each non-

empty open subset V of E one has {t ≥ 0 : G(δt)x ∈ V } = {t ≥ 0 :

G1(δt)
(0
x

)

∈ E × V } = {t ≥ 0 : G1(δt)
(

x
0

)

∈ V ×E}, the same holds

for frequent hypercyclicity.

(ii) It is not clear how we can neglect the condition on the existence of

open non-empty subset Ω ⊆ ρC(A) such that the mapping λ 7→ (λ−
A)−1C, λ ∈ Ω is strongly continuous. Speaking-matter-of-factly,

in the present situation, we do not know whether the assertion of

Lemma 5 can be extended to fractionally integrated C-semigroups.

(iii) Assume that
(

x
y

)

is a frequently hypercyclic vector for (S(t))t≥0 ⊆
L(Ẽ). Then

G1

(

δt
)

(

x

y

)

=

(

π1

(

G1

(

δt
)

(

x

y

)

)

,
d

dt
π1

(

G1

(

δt
)

(

x

y

)

))T

, t ≥ 0

and

u(t) = π1

(

G1(δt)

(

x

y

)

)

, t ≥ 0

is a mild solution of (ACP2). This simply implies that for each pair

of open non-empty sets V1, V2 in E the set {t ≥ 0 : (u(t), u′(t))T ∈
(V1 × V2) ∩ Ẽ} has positive lower density. Since

{

t ≥ 0 : (u(t),u′(t))T ∈ (V1 × V2) ∩ Ẽ
}

⊆
{

t ≥ 0 : u(t) ∈ V1 ∩ π1(Ẽ)
}

∩
{

t ≥ 0 : u′(t) ∈ V2 ∩ π2(Ẽ)
}

,

we also have that the set {t ≥ 0 : u(t) ∈ V1 ∩ π1(Ẽ)} ∩ {t ≥ 0 :

u′(t) ∈ V2 ∩ π2(Ẽ)} has positive lower density.

We continue by stating the following result (see also [21, Theorem 35]):

Theorem 2. Suppose that θ ∈ (0, π
2 ) and −A generates an exponentially

equicontinuous, analytic strongly continuous semigroup of angle θ. Assume

n ∈ N, an > 0, an−i ∈ C, 1 ≤ i ≤ n, D(p(A)) = D(An), p(A) =
∑n

i=0 aiA
i

and n(π
2 − θ) < π

2 . Then there exists ω ∈ R such that, for every α ∈
(1, π

nπ−2nθ ), p(A) generates an entire C ≡ e−(p(A)−ω)α

-regularized group

(T (t))t∈C. Set C(z) := 1
2 (T (z) + T (−z)), z ∈ C and

Ẽ := span{(f(λ), p(−λ)f(λ))T : λ ∈ Ω}.
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Then (C(t))t≥0 is a C-regularized cosine function generated by p2(A), the

mapping z 7→ C(z), z ∈ C is entire and there exists a pair (x, y)T ∈ Ẽ such

that the abstract Cauchy problem (ACP)2, with the operator A replaced with

the operator p2(A) therein, has a unique mild solution u(·) satisfying that

the mapping t 7→ Cu(t), t ≥ 0 can be extended to an entire function and

that for each pair of open non-empty sets V1, V2 in E the set {t ≥ 0 : u(t) ∈
V1 ∩ π1(Ẽ)} ∩ {t ≥ 0 : u′(t) ∈ V2 ∩ π2(Ẽ)} has positive lower density.

Proof. The required conclusions immeditaly follow from the argumenta-

tion employed in the proof of above-mentioned theorem, the equalities

p2(A)f(λ) = p2(−λ)f(λ), λ ∈ Ω and
(

0 I

p2(A) 0

)(

f(λ)

p(−λ)f(λ)

)

= p(−λ)

(

f(λ)

p(−λ)f(λ)

)

, λ ∈ Ω,

as well as Theorem 1(ii) and Remark 1(iii). �

As thoroughly explained in [21], there is a substantially large class of

abstract second order differential equations which cannot be treated by

integrated cosine functions. In what follows, we examine frequently hy-

percyclic properties for certain types of abstract second order differential

equations by using the theory of C-regularized cosine functions:

Example 1. (i) (see e.g. [12, Example 4.12] and [21, Example 36(i)])

Suppose that a, b, c > 0 and c < b2

2a < 1. Of concern is the equation










ut = auxx + bux + cu := −Au,
u(0, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0.

It is well known that the operator −A, with domain D(−A) = {f ∈
W 2,2([0,∞)) : f(0) = 0}, generates an analytic strongly continuous

semigroup of angle π
2 in the space E = L2([0,∞)); the same asser-

tion holds in the case that the operator −A acts on E = L1([0,∞))

with domain D(−A) = {f ∈W 2,1([0,∞)) : f(0) = 0}. Set

Ω :=

{

λ ∈ C :

∣

∣

∣

∣

∣

λ−
(

c− b2

4a

)
∣

∣

∣

∣

∣

≤ b2

4a
, =λ 6= 0 if <λ ≤ c− b2

4a

}

and suppose that p(x) =
∑n

i=0 aix
i is a non-constant polynomial

such that an > 0 and p(−Ω) ∩ iR 6= ∅ (this, in particular, holds if

a0 ∈ iR). Define Ẽ := span{(fλ(·), p(−λ)fλ(·))T : λ ∈ Ω}, with the

function fλ(·) being given in [12, Example 4.12]. An application of

Theorem 2 gives that there exists an injective operator C ∈ L(E)

such that p2(A) generates a global C-regularized cosine function
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(C(t))t≥0 satisfying that there exists a pair (x, y)T ∈ Ẽ such that the

abstract Cauchy problem (ACP2), with the operator A replaced with

the operator p2(A) therein, has a unique mild solution u(·) satisfy-

ing that the mapping t 7→ Cu(t), t ≥ 0 can be extended to an entire

function and that for each pair of open non-empty sets V1, V2 in E

the set {t ≥ 0 : u(t) ∈ V1 ∩ π1(Ẽ)} ∩ {t ≥ 0 : u′(t) ∈ V2 ∩ π2(Ẽ)}
has positive lower density.

(ii) ([14]) Theorem 2 can be applied in the analyis of Laplace-Beltrami

type operators considered by L. Ji and A. Weber in [14, Theorem

3.1(a), Theorem 3.2, Corollary 3.3]. For instance, let us assume

that E is a symmetric space of non-compact type (of rank one)

and p > 2. Then there exist a closed linear subspace Ẽ of E ×E, a

number cp > 0 and an injective operator C ∈ L(Lp
\ (E)) such that for

any c > cp the operator (−∆\
X,p+c)

2 generates a global C-regularized

cosine function (C(t))t≥0 in Lp
\(E) satisfying additionally that there

exists a pair (x, y)T ∈ Ẽ such that the abstract Cauchy problem

(ACP2), with the operator A = (−∆\
X,p + c)2 therein, has a unique

mild solution u(·) satisfying that the mapping t 7→ Cu(t), t ≥ 0 can

be extended to an entire function and that for each pair of open non-

empty sets V1, V2 in E the set {t ≥ 0 : u(t) ∈ V1 ∩ π1(Ẽ)} ∩ {t ≥
0 : u′(t) ∈ V2 ∩ π2(Ẽ)} has positive lower density. Observe, finally,

that Theorem 2 can be applied to the operators examined in [21,

Example 36(ii)], as well.

In the former example, we have used a well known procedure of convert-

ing the abstract differential equation of second order into the system of two

abstract differential equations of first order. In our approach, the matri-

cial operator A generates a C-regularized semigroup on the product space

E × E, for a certain injective operator C ∈ L(E × E). Concerning hyper-

cyclic and chaotic behaviour of abstract (complete) differential equations of

second order, the situation in which the matricial operator obtained after

the above described procedure generates a strongly continuous semigroup

on the product space E×E has been analyzed by a great number of authors

so far, almost always with analytic function spaces of Herzog type acting as

pivot spaces (see e.g. [8]-[10]). Since the Desch-Schappacher-Webb crite-

rion [12] has been essentially employed in these papers and since its validity

also implies the frequent hypercyclicity of strongly continuous semigroup

under consideration [24], we can also clarify certain results about frequent

hypercyclicity of obtained solutions of second order equations. For exam-

ple, J. A. Conejero, C. Lizama and M. Murilllo-Arcila [10] have analyzed
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the chaotic and hypercyclic properties of the following abstract differential

equation of second order

∂2

∂t2
u(t, x) + γ

∂

∂t
u(t, x) + θu(t, x) = α

∂2

∂x2
u(t, x), t ≥ 0, x ∈ R;

u(0, x) = ϕ1(x),

(

∂

∂t
u(t, x)

)

t=0

= ϕ2(x), (3)

on the Herzog space

Eρ :=

{

f : R → C ; f(x) ≡
∞
∑

n=0

anρ
n

n!
xn, (an)n∈N0

∈ c0(N0)

}

,

where γ, α, θ ∈ R. In [10, Theorem 3.1], the authors have shown that the

corresponding matricial operator Aγ,α,θ ≡
(

0 I

α ∂2

∂x2 − θI −γI

)

, which is

bounded and continuous on Eρ, generates a chaotic and frequently hyper-

cyclic strongly continuous semigroup on the space Eρ × Eρ, provided that

γ, α, θ ∈ R are real positive numbers, γ2 = 4θ and ρ > γ/2
√
α. This im-

plies that there exist two functions ϕ1, ϕ2 ∈ Eρ such that the eqaution (3)

has a unique solution u(·, ·) satisfying that for each pair of open non-empty

subsets V1, V2 of Eρ we have that the set {t ≥ 0 : u(t, ·) ∈ V1} ∩ {t ≥ 0 :
∂
∂t
u(t, ·) ∈ V2} has positive lower density.

Due to Remark 1(i), an element x is a frequently hypercyclic vector

of a (C − DCF ) G if
(

x
0

)

(
(

0
x

)

) is a frequently hypercyclic vector of the

induced C-distribution semigroup G. The question when G will have a fre-

quently hypercyclic vector
(

x
y

)

belonging the union of subspaces {0} × E

and E×{0} is very non-trivial and, becuase of that, the notion of frequent

hypercyclicity of C-distribution cosine functions and integrated C-cosine

functions introduced in Definition 6-Definition 7, obeying the approach fol-

lowing the existence of a frequently hypercyclic vector of G, seems to be

a little bit strong. Keeping in mind Remark 1(iii), Theorem 2, Example

1 and the consideration from the previous paragraph, it is much better to

analyze the frequently hypercyclic vectors of induced C-distribution semi-

groups on the product space E × E. In our forthcoming paper [7], we will

follow this approach for the abstract higher-order differential equations.

Concerning frequently hypercyclic properties of integrated cosine func-

tions, we would like to raise the following issue:

Example and problem. Suppose that n ∈ N, ρ(t) := 1
t2n+1

, t ∈ R,

Af := f ′, D(A) := {f ∈ C0,ρ(R) : f ′ ∈ C0,ρ(R)}, En := (C0,ρ(R))n+1,

D(An) := D(A)n+1 and An(f1, ···, fn+1) := (Af1+Af2, Af2+Af3, ···, Afn+
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Afn+1, Afn+1), (f1, · · ·, fn+1) ∈ D(An). Set, for every ϕ1, · · ·, ϕn+1 ∈ D,

G±(δt)
(

ϕ1, · · ·, ϕn+1

)T
:=
(

ψ1, · · ·, ψn+1

)T
,

where ψi(·) :=
∑n+1−i

j=0
(±t)j

j! ϕ
(j)
i+j(·±t), 1 ≤ i ≤ n+1. Let Gn and (Cn(t))t≥0

denote the (DCF ) and global polynomially bounded n-times integrated co-

sine function generated by A2
n. In [21, Example 38], we have shown that

Gn and (Cn(t))t≥0 are topologically mixing as well as that A2
n cannot be

the integral generator of any (local) (n − 1)-times integrated cosine func-

tion. Furthermore, we have lim|t|→∞G(δt)(ϕ1, · · ·, ϕn+1)
T = 0 for every

ϕ1, · · ·, ϕn+1 ∈ D. Since the statements of [5, Theorem 1.2, Corollary 1.3,

Theorem 1.4] and [21, Theorem 25] cannot be so easily reexamined for fre-

quent hypercyclicity, we would like to ask finally whether Gn and (Cn(t))t≥0

are frequently hypercyclic or not?

Frequently hypercyclic properites of cosine operator functions on weighted

function spaces will be considered somewhere else.
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