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Abstract. This paper considers a class of autonomous dynamical systems in many 

aspects. It shows the connection with EPGLT and EPGD, associated with three type’s 

diffeomorphism. It studied attractor (attractors) for the solution (solutions) at some 

special autonomous dynamical systems classes. By that, it shows some important 

properties from topological and metric aspect. 

 

 

1. INTRODUCTION  

 

Mathematical formalization of the notion of deterministic process leads to the 

notion of EPGT (one-parameter group transformations). Here are reviewing EPGD 

(one-parameter group diffeomorphisms) and their relation to dynamical systems, vector 

fields, phase flow, phase space, phase curves, autonomous systems, differential 

equations, etc. 

All definitions and theorems in this section are taken from references. 

 

One-parameter group of transformations (EPGT), EPGD, EPGLT 

 

Definition 1. Let M be a set. A family of transformations of M into itself, is called a 

group of transformations, if together with any transformation f, its inverse 

transformation f
 -1

 belongs to the family, and every two transformations f and g, their 

product f০g belong to the family, where (f০g)(x) = f (g (x)).  

  

Definition 2. Let G be an abstract group and M be a set. We say that a set of group G 

acts on the set M, if to every element g of the group G corresponds to the transformation 

Tg : M  M, wherein f, gG, Tf , Tg : MM, so that 

f g f gT T T  , 1
1( )ff

T T
 . 

The transformation Tg is called the action element gG into set M. With action g 

into m is obtained element Tg m = gm. The set {gmgG}  M is called the orbit for the 

fixed point m. 
_______________________________________________________________________________________________________ 
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The action yet determined mapping T: GxM  M, i.e. (g, m)  Tg m.  

Note: The action of the group G into the set M is the homomorphism of group G in the 

group transformations of the set M. 

All processes today are related to time (deterministic process). Therefore, when we 

talk about the processes, they will be provided with links with time (mathematically 

speaking with parameter), with the help of a group of real numbers. 

 

Definition 3. Let G be a commutative group and let R (+) is the group of real numbers. 

The action (or homomorphism) of the R into G is called a one-parameter group  

G
t
 = {g

t
 gG, tR}. Then g

t+s
 = g

t০g
s
, g

-t
 = (g

t
)

-1
 is true.  

 

Definition 4. A family {g
t
} of mappings of a set M into itself, labeled by the set of all 

real numbers (tR), is called a one-parameter group of transformations (EPGT) of M, 

if g
t+s 

= g
t০g

s
, for all t, sR and g

0
 is the identity mapping (which leaves every point 

fixed). Usually the parameter t is called time, and the Transformation g
t
, is called 

transformation for time t. 

If g
t
 is a linear transformation of a set M into itself, then an {g

t
} is called a one-

parameter group of linear transformations (EPGLT). 

 

Definition 5. By a one-parameter group {g
t
} of diffeomorphism (EPGD) of a manifold 

M (which can be thought of as a domain in Euclidean space) is meant a mapping  

g: RxM  M, g (t, x) = g
t
x, tR, xM of the direct product RxM into M such that  

1) g is a differentiable mapping; 

2) The mapping g
t
: M M is a diffeomorphism for every tR; 

3) The family {g
t
, tR} is a one-parameter group of transformations of M. 

 

Phase space, phase flow, kinematic and geometric aspect, equivalence of linear 

flows, Definition of dynamical systems (topological) 

 

EPGT is mathematically equivalent physical ideas of two-sided deterministic process.  

 

Definition 6. A pair (M, {g
t
}) consisting of a set M and one-parameter group {g

t
} of 

transformations (EPGT) of M into itself is called a phase flow. The set M is called the 

phase space of the flow, and its elements are called phase points. In other words phase 

flow is the set of mappings g
t
x: RxM  M. The orbits of the phase flow are called phase 

curves or trajectories. 

 

Definition 7. Let (M,{g
t
}) be a phase flow, given by a one-parameter group of 

diffeomorphisms (EPGD) of a manifold M  R
n
 . By the phase velocity v(x) of the flow 

g
t
 at a point xM is meant the vector representing the velocity of motion of the phase 

point, i.e. 
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0( ) ( )td

tdt
v x g x .                                   (1.1) 

The left-hand side of (1.1) is often denoted by x’. Note that the derivative is defined, 

since the motion is a differentiable mapping of a domain in Euclidean space. 

Let M be a domain in Euclidean space with coordinates x1, x2, …, xn (xi :M R) and 

suppose that with every point xM there is associated the vector v(x) emanating from x. 

Then this defines a vector field v on M, specified in the xi coordinate system by n 

differentiable functions vi : M  R.  

 

Note: In the theory of dynamical systems and topology, dynamical systems are defined 

by the following definition. 

 

Definition 8. Let X be a topological space and let F: XxR  X is continuous mapping 

with the following properties: 

1. F (x, 0) = x, xX,  

2. F (x, t + s) = F (F (x, t), s), xX, t, s, R  

Then the pair (X, F) is called continuous dynamical system (flow), and X is called phase 

space. The mapping Ft: X  X, Ft (x) = F (x, t), tR is called transformation of X at 

time t. 

 

Note: If F(x, t) = g
t
x, then F(x, t + s)=g

t+s
x=g

t 
(g

s
x)=F(g

t
x, s)=F(F(x, t), s) is true. 

 

Definition 9. Let xM be any phase point, and consider the mapping  

: , ( ) tR M t g x           (1.2) 

of the real line into phase space. Then the mapping (1.2) is called the motion of the 

point x under the action of the flow (M, {g
t
}). 

 

Definition 10. The image of R under the mapping (1.2) is called a phase curve of the flow 

(M, {g
t
}). The graph of the motion (1.2) is called an integral curve of the flow (M, {g

t
}). 

 

Theorem 1. Let M be a smooth manifold, and let v: M TM be a vector field. 

Moreover, let the vector v(x) be different from the zero vector of TMx only in a compact 

subset K of the manifold M. Then there exists an EPGD g
t
: M M for which v is the 

phase velocity field: 

( ).t td
dt

g x v g x
 

 

Corollary 1. Every vector field v on a compact manifold M is the phase velocity field of 

a EPGD. 

 

Each of these classifications is based on some equivalence relation. There exist at 

least three reasonable equivalence relations for linear systems, corresponding to 

algebraic, differentiable, and topological mappings. 



42    B. Piperevski  

 

 

Definition 11. Two phase flow {g 
t
}, {f 

t
}: R

n 
 R

n
 are said to be equivalent if there 

exists a one-to-one mapping h: R
n
R

n
 carrying the flow {f 

t
} into the flow {g

t
} such 

that h০f 
t
 = g

t ০h for every tR. Under these conditions, the flows are said to be: 

1) linearly equivalent if the mapping h: R
n
 R

n
 in question is a linear automorphism; 

2) Differentiably equivalent if the mapping h: R
n
R

n
 is a diffeomorphism; 

3) Topologically equivalent if the mapping h: R
n
 R

n
 is a homeomorphism, i.e., if h is 

one-to-one and continuous in both directions. 

 

Remark 1. Linear equivalence implied differentiable equivalence, while differentiable 

equivalence implies topological equivalence. 

 

Remark 2. Note that the mapping h carries phase curves of the flow {f 
t
} into phase 

curves of the flow {g
t
}. 

 

Relationship between EPGD and systems differential equations, the notion of 

autonomy, EPGLT and linear systems differential equations 

 

One process, if is defined by the phase flow, changes from one state to another state 

continuous. Then continuous changes, if given by a vector field v(x), can be 

characterized by derivatives that we can come to the system differential equations x'=v(x). 

Because is a concept for a deterministic process (past- present - future), here we are 

dealing with a stationary process i.e. autonomous system differential equations. 

 

Theorem 2. Let ({g
t
}, M  R

n
) be the phase flow. Let x0M be fixed point and let him 

consider the mapping : R  M, defined with  (t) = g
t
 x0 . The mapping  occurs as 

the solution of the system differential equations x' = v (x) (autonomous system) with 

initial condition (0) = x0, where 

0( ) ( ).td
tdt

v x g x  

 

Definition 12. Phase flow of the system differential equations x' = v(x), xMR
n
, called 

EPGD (dynamical system) which occurs as the phase vector field of speeds. 

 

Theorem 3. Let x' = v(x), xM R
n
 is the autonomous system differential equations. 

Let M be a smooth manifold, and let v: M TM be a vector field. Moreover, let the 

vector v(x) be different from the zero vector of TMx only in a compact subset K of the 

manifold M. Then there exists an EPGD, g
t
: M M for which v is the phase velocity 

field: 

( )t td
dt

g x v g x  .  

  

In particular, under the conditions of the theorem 1 or those of Corollary 1, we have: 
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Corollary 2. Every solution of the system differential equations x’ = v(x), xM, M 

compact manifold, can be extended indefinitely forward and backward, with the value of 

the solution g
t
x at time t depending smoothly on t and the initial condition x. 

 

Theorem 4. The family of linear operator e
tA

: R
n 
 R

n
, t R is an EPGLT of R

n
. 

 

Theorem 5. Let g
t
: R

n
 R

n
 be a EPGLT. Then there exists a linear operator A: R

n
 R

n
 

such that g
t
 = e

tA
. 

 

Theorem 6. The solution of linear autonomous system of differential equations x’ = Ax, 

xR
n
, satisfying the initial condition (0) = x0, is given by formula  (t) = e

At
x0, tR. 

Thus, adequate  EPGLT of the linear autonomous system of differential equations x' = 

Ax is given by g
t 
= e

At
 and way around.  

 

Topological linear dynamical system is actually EPGLT and equivalence relation 

defined in Definition 11 can be transferred to the appropriate linear autonomous systems 

differential equations. 

 

Theorem 7. Let A, B: R
n
 R

n
 be linear operators all whose eigenvalues are simple. 

Then the systems x’= Ax, xR
n
, y’=By, yR

n
 are linearly and differentiably equivalent, 

if and only if the eigenvalues of the operators A and B coincide.  

 

Theorem 8. A necessary and sufficient condition for topological equivalence of two 

linear systems, all of whose eigenvalues have nonzero real parts, is that the number of 

eigenvalues with negative (and hence positive) real parts be the same in both systems. 

 

Remark 3. A similar result holds locally (in a neighborhood of a fixed point) for 

nonlinear autonomous systems whose linear parts have no purely imaginary 

eigenvalues. In particular, in a neighborhood of a fixed point such a system is 

topologically equivalent to its linear part.  

 

Correlation of the theory of differential equations with dynamical systems about 

topological aspect, Attracting sets, attractors 

 

In the theory of differential equations is known fundamental theorem of existence 

and uniqueness of the solution of system differential equations. Based on this theorem, 

shall be proved claims about a separate class of autonomous systems differential 

equations. 

 

Theorem 9. Let be a given autonomous system differential equations: 

1 2( , ,..., ), 1, ,idx
i ndt

f x x x i n   
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And let is x =  (t; x0), a solution of this system, with initial condition (0) = x0. Then 

solution x =  (t; x0), satisfies the following simple properties: 

1) A solution is continuous in terms of the set of all variables, 

2) (0; x0)  x0, 

3)  (t1 + t2; x0)   (t2; (t1; x0)).  

 

Note.  (t; x0) = g
t
x0 is true. 

 

Property 3) is proved by help the fundamental theorem of existence and uniqueness 

of the solution of the autonomous system differential equations. 

Same property in the theory of topology and dynamical systems is used as a 

condition in definition of dynamical systems. On the other hand, this condition followed 

by the corresponding condition of the group EPGT. 

 

Definition 13. Let  (t) is a solution of the system differential equations x’ = v(x), 

xMR
n
, satisfying the initial condition (t0)=x0 , with defined values for all t>t0, and 

remains for they values t into the closed and bounded set F  M. Point p of the space M 

is called the -the limit point for solution  (t), if there is such a unlimited growing 

sequence of values (greater than t0) t1, t2,., tk .., lim k
k

t


   so that lim ( )k
k

t p


 . The 

family (totality)  of all limit points of the solutions  (t) is called -limit set. 

 

It is shows that the set  is non empty, is closed, is bounded and consists of 

complete trajectories purposes. The latter means that if the point  belongs to , then 

trajectory of the solution  (t; ) with initial value (0) = , defined for all values of t, 

and whole trajectory of the solution  (t; ), belongs to the set . Obviously that -limit 

set trajectories  (t; ) completely are contained in . 

The term the limit-points or limit-set can be replaced with the attracting points or 

attracting set. A special type such Sets are attractors which, also, exist in different 

species (global, whimsical, etc.). Sure they are taught the theory of topology, functional 

analysis and other areas in which systems are studied depending on the change of 

parameters and their stability. 

One construction of a strange attractor – is a product of the Cantor set of manifold. 

Strange attractor is not a point, orbit, or of type Eight.  

Usually today under attractor means minimal, invariant and compact set. Usually 

strange attractor means set has zero measure 0 and has fractal structure.  

In the theory of differential equations these autonomous systems, are sub systems of 

general Systems differential equations. They are studied by other aspects such as their 

solving, stability of the solutions (stability theory, Lyapunov functions), the dependence 

of the behaviour of the system by changing the parameters (the behaviour of solution of 

a system differential equations on an infinite time interval, chaos, attractors, etc.), 

approximately solving with qualitative analysis etc. 
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2. MAIN RESULT, LORENZ MODEL  

 

Theorem 10. Let be given the Lorenz system 

( )

( )

x y x

y x r z y

z xy bz

 

  

 

.          (2.1) 

Let (x (t), y (t), z (t)) be the solution, with the initial conditions x(0)=a0, y(0)=b0, z(0)=c0, 

is developed in a Maclaurin’s series 

!
0

( ) na n
n

n

x t t




  , 
!

0

( ) nb n
n

n

y t t




  , 
!

0

( ) nc n
n

n

z t t




  .              (2.2) 

With direct replacement in system and the equalization of coefficients before 

corresponding degree are getting the system Difference equations 

 

1 1

1
1

1 1 1
0

1
1

1 1
0

( )

( )

( )

n n n

n
n

n n n i i n i
i

n
n

n n i i n i
i

a b a

b r a b a c

c bc a b

  




   





  


 

  

  





,      (2.3) 

Suppose that numerous series
0

n
n

a




 ,
0

n
n

b




 , 
0

n
n

c





 

are convergent with sums A, B, C,  

respectively. Then the sums can be obtained by formulas 

0

1

B a
A








 , 0

0

(1 )( 2 )b B

B a
C r





 


  , B+a0 0,    (2.4) 

And B is a solution, real number, to the equation from the third degree 

 

2 3 2 2 2
0 0 0

2
0 0 0 0

2 [ (1 )(1 ) 2(1 ) (1 ) (1 ) ]

(1 )(1 ) (1 ) (1 ) (1 ) 0

B a B r b b a c B

b ra b b c a

      

  

          

        
. 

Proof. From system (2.3) by summing up the left and right sides for the n = 1 to  and 

using the assumption for a convergence of numerous series, is gets the system 

 0 0 0( ) , ,A B A a B rA B AC b C bC AB c          
 
,   

from that is obtained the formula (2.4).
 

 

Now, we will apply Remark 3 and Theorem 8, in Lorenz system (2.1) and Rössler system: 

 

( )x y z

y x y

z b xz cz



  

 

   . 
First the Rössler system with shift 

1 1 1, ,x x D y y D z z D       

It is modified in System 
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( )x y z

y x y

z xz Dz Dx cz





  

 

    ,

  

Where D is one of the numbers 
2 4

2
c c b


  , and it consider in the neighbourhood of the 

fixed point (equilibrium position) O(0,0,0). With linearization, own values in the Lorenz 

system are the roots of the characteristic equation 

2( )[ ( 1) ] 0b r            ,  

And for the modified Rössler system are the roots of the characteristic equation 

 3 2 [ ( ) 2] 0,A A A A c D               .   (2.5) 

Because values in the Lorentz system are real and different for r>1, two negative 

and the third positive, according to observation, the systems are locally topologically 

equivalence if the characteristic equation (2.5) has two negative and one positive real 

part of the three roots. In this case in addition to the requirement may be using two 

modified systems. 
 

The modification of Rössler system has more one equilibrium point 

2 2
1( 2 , , )D c D cO c D  

 
    . 

 

Theorem 11. Let be given the Lorenz system differential equations. Let's are consider a 

corresponding linearization of system in the neighbourhood of the equilibrium position 

0(0, 0, 0), given by equations
 ( )x y x

y rx y

z bz

 

 

 

          (2.6) 

The matrix of this system is given by the formula 

 

0

1 0

0 0

A r

b

  
  
 
   ,

 

And its own values are roots of the equation 

2( )[ ( 1) ] 0b r           .     (2.7) 

Then the system (2.6) there is an EPGLD given by the formula  

3 2

1

1 2 3
1

1 2 3

0 0

t

t

A A A

g B B B

e

 




 
 

  
 
 

,        (2.8) 

 where  

32

2 3
1

ttr rA e e
 

   

 

  , 32
1

tt
B re re


   , 2 2 32

2 3
2

tt
A e e

  
    

  ,  
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32
2 2 2

tt
B e e

   , 3 3 31 2

1 2 3
3

tt t
A e e e

   
       

   , 31 2
3 3 3

tt t
B e e e

      

2

2
2

r  




 
 , 

2 2
3 2

2
3 ( )

b b b b rb

b

     

 


   


 , 3

3
2

r  




 
  , 3 2

3

( )
3 ( )

b r b b

b

    

 


   


 ,  

and 1 2 3, ,b     are roots of the equation (2.7), provided  

2 0r b b b       . 

Proof. Until formula (2.8) are coming through eigenvectors of matrix A corresponding 

to the eigenvalues 1 = -b, 2, 3 given by the formulas 

1

1 1

1

X


 
 
 
 
 
 
   ,

2

2 1

0

X


 
 
 
 
 
 
  , 

3

3 1

0

X


 
 
 
 
 
 
   ,

 

and auxiliary matrix 

 

31 2

1 2 3

31 2

1

0

0 0

tt t

tt tt

t

e e e

g e e e

e

   
     

 



  
 
 
 

  
 
  

. 

are shows that the corresponding properties  

0 , t s t sg E g g g  , ( )t td
dt

g x v g x  ,  

are valid. 

 

3. CONCLUSION  

 

Usually in the theory of differential equations, autonomous systems are called 

dynamical Systems differential equations only for the appropriate condition in group 

EPGD (Definition 4), thus explicitly not is stated that are autonomous. With Definition 

12 clearly defines the essential difference between dynamical systems and autonomous 

systems differential equations. Properties 1-3 of Theorem 9 are as essential.  

Often under dynamical systems (flow otherwise) in Definition 8 (conditions 1, 2) 

means the family transformations  (t; x0) any set into itself (where can be defined 

continuity transformations), if the properties 1-3 of Theorem 9 are met, even when are 

not given differential equations. 

Discussed the similarities and differences 

The Definitions 5, 6, 8, 9, 12, together with Theorems 2, 3 and 9 gives the similarity 

and difference between the terms dynamical systems and autonomous systems 

differential equations. Relationships between them are given with the Theorems 1, 2 and 3. 

Thus with each EPGD is connected system differential equations (given by the 

vector field phase speeds) whose solution appears as a moving phase points under the 

influence of the phase flow. If phase flow describes any process in random initial 
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conditions then the system differential equations given by its vector field of the phase 

speeds determined by the local law of the evolution process. In the theory of differential 

equations is required, knowing the law of evolution, to conclude the past and predict the 

future. The formulation of any law of nature in the form of differential equation is 

reduced any job for the evolution process (physical, chemical, environmental, 

biological, etc.) in the geometric task for behaviour of phase curves of a given vector 

field in the appropriate phase space.  

Usually today, quite often are mixed dynamical system in terms (topological) and 

dynamical system autonomous differential equations. Obviously dynamical system 

(topological) by definition fits only in autonomous system differential equations. The 

opposite is not necessarily true as shown with the example 2dx
dt

x .  
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