ISSN 0351-336X

Математички Билтен Vol.38 (LXIV) No.2 2014(91-94)Скопје, Македонија

UDC: 517.983:519.65

MODIFIED BASKAKOV-KANTOROVICH OPERATORS PROVIDING A BETTER ERROR ESTIMATION

QIULAN QI AND GE YANG

Abstract. We introduce a kind of Baskakov-Kantorovich operators, which preserve the test functions 1 and x^2 . This type of modification enables better error estimation on the interval $\left[\frac{\sqrt{3}}{3}, +\infty\right)$ than the classic ones. Finally, a Voronovskaya-type theorem for these operators is also obtained.

1. INTRODUCTION

King-type approximation operators [1-7] preserving the test functions 1 and x^2 , and have better approximation properties than the classical ones. Motivated by this, we introduce a kind of Baskakov- Kantorovich operators, which preserve the test functions 1 and x^2 and have better error estimation on the interval $\left[\frac{\sqrt{3}}{3}, +\infty\right)$ than the classical Baskakov-Kantorovich operators.

Then, the classical Baskakov-Kantorovich operators are defined by

$$V_n^*(f,x) = n \sum_{k=0}^{\infty} v_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt,$$
(1.1)

where $v_{n,k}(x) = \binom{n+k-1}{k} x^k (1+x)^{-n-k}, \ f \in C_{\beta}[0,+\infty) := \{ f \in C[0,+\infty) : |f(t)| \le M(1+t)^{\beta} \text{ for some } M > 0, \beta > 0 \}.$ Let $f \in C_{\beta}[0,+\infty), \ u_n(x) = \frac{-1+\sqrt{n(n+1)x^2+\frac{2}{3}-\frac{1}{3n}}}{n+1}, \ x \ge \frac{\sqrt{3}}{3} \text{ and } n \in N, \text{ then we get the following modified positive linear operators:}$

$$V_n^{**}(f,x) = n \sum_{k=0}^{\infty} v_{n,k}(u_n(x)) \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt$$
(1.2)

We will give the moments and convergence theorem of our operators, which preserving the test functions 1 and x^2 .

The main result of this paper is:

93

²⁰¹⁰ Mathematics Subject Classification. 41A25, 41A36.

Key words and phrases. Baskakov-Kantorovich operators; modulus of continuity; Voronovskaya-type theorem.

Theorem 1. Let $f \in C_B[0, +\infty)$, the space of all bounded functions on $[0, +\infty)$, for $x \geq \frac{\sqrt{3}}{3}$, $n \in N$, we have

$$|V_n^{**}(f,x) - f(x)| \le 2\omega \left(f, \sqrt{\frac{\varphi^2(x)}{n} - \frac{1}{2n^2}}\right),$$

where $\varphi^2(x) = x(1+x)$ for V_n^{**} , the modulus of continuity of f denoted by $\omega(f, \delta_x)$ for $\delta_x > 0$, is defined to be

$$\omega(f, \delta_x) = \sup_{|t-x| \le \delta_x, t \in [0, +\infty)} |f(t) - f(x)|.$$

Throughout this paper, M denotes a positive constant independent of n and x and not necessarily the same at each occurrence.

2. The convergence theorem of the modified operators

By calculation, we can obtain the following result.

Lemma 1. For each
$$x \ge \frac{\sqrt{3}}{3}$$
, we have
(1). $V_n^{**}(1, x) = 1$;
(2). $V_n^{**}(t, x) = \frac{\sqrt{n(n+1)x^2+2/3-\frac{1}{3n}}}{n+1} - \frac{n-1}{2n(n+1)}$;
(3). $V_n^{**}(t^2, x) = x^2$.

By Lemma 1, it is clear that the operators V_n^{**} given by (1.2) preserve the test functions 1 and x^2 . Then from Lemma 1, one can get the following results for moments.

Lemma 2. For each
$$x \ge \frac{\sqrt{3}}{3}$$
, we have
(1). $V_n^{**}(t-x,x) = \frac{\sqrt{n(n+1)x^2+2/3-\frac{1}{3n}}}{n+1} - \frac{n-1}{2n(n+1)} - x;$
(4). $V_n^{**}((t-x)^2,x) = 2x^2 - \frac{x}{n} - 2xu_n(x);$
(3). $V_n^{**}((t-x)^2,x) \le \frac{\varphi^2(x)}{n} - \frac{1}{2n^2}.$

From Lemma 1, 2 and with the Korovkin-type property, we have the following convergence theorem.

Theorem 2. Let $f \in C_{\beta}[0, +\infty)$, $x \geq \frac{\sqrt{3}}{3}$, we have $\lim_{n\to\infty} V_n^{**}(f, x) = f(x)$.

3. Better error estimation

Theorem 3. Let $f \in C_B[0, +\infty)$, $x \ge \frac{\sqrt{3}}{3}$, $n \in N$, we have $|V_n^{**}(f, x) - f(x)| \le 2\omega (f, \delta_{n,x})$, where $\delta_{n,x} = \sqrt{\frac{\varphi^2(x)}{n} - \frac{1}{2n^2}}$. *Proof.* Let $f \in C_B[0, +\infty)$ and $x \ge 0$, using linearity and monotonicity of the operators V_n^{**} , for every $\delta > 0, n \in N$, we get

$$|V_n^{**}(f,x) - f(x)| \le \omega(f,\delta) \left(1 + \frac{1}{\delta} \sqrt{V_n^{**}((t-x)^2,x)} \right).$$

Applying Lemma 2 and choosing $\delta = \delta_{n,x}$, the proof is complete.

Remark 3.1. (1).[8] For the Baskakov-Kantorovich operators given by (1.1), we may write that, for $f \in C_B[0, +\infty)$ and $x \ge 0, n \in N$,

$$|V_n^*(f,x) - f(x)| \le 2\omega (f, \alpha_{n,x}),$$
 (3.1)

where $\alpha_{n,x} = \sqrt{\frac{x(1+x)}{n} + \frac{1}{3n^2}}$. (2).We can see that the error estimation in Theorem 3 is better than that of (3.1) provided $f \in C_B[0, +\infty), x \ge \frac{\sqrt{3}}{3}$.

Indeed, it is clear that

$$\frac{x(1+x)}{n} - \frac{1}{2n^2} < \frac{x(1+x)}{n} + \frac{1}{3n^2},\tag{3.2}$$

which guarantees that $\delta_{n,x} < \alpha_{n,x}$ for $x \ge \frac{\sqrt{3}}{3}$. We say that a bounded function $f \in C[0, +\infty)$ belongs to $Lip_M(\alpha)$ if the inequality $|f(t) - f(x)| \le M |t - x|^{\alpha}$ holds for all $t \in [0, +\infty)$.

Theorem 4. For every $f \in Lip_M(\alpha)$, $x \geq \frac{\sqrt{3}}{3}$ and $n \in N$, we have

$$|V_n^{**}(f,x) - f(x)| \le M \left\{ \frac{\varphi^2(x)}{n} - \frac{1}{2n^2} \right\}^{\frac{\alpha}{2}}.$$

Proof. Since $f \in Lip_M(\alpha), x \geq 0$, using the Hölder inequality with $p = \frac{2}{\alpha}, q =$ $\frac{2}{2-\alpha}$, we have

$$\begin{aligned} |V_n^{**}(f,x) - f(x)| &\leq V_n^{**}(|f(t) - f(x)|, x) \leq M V_n^{**}(|t - x|^{\alpha}, x) \\ &\leq M \left(V_n^{**}(|t - x|^2, x) \right)^{\frac{\alpha}{2}} \leq M \left\{ \frac{\varphi^2(x)}{n} - \frac{1}{2n^2} \right\}^{\frac{\alpha}{2}}. \end{aligned}$$

Remark 3.2. The classical Baskakov-Kantorovich operators given by (1.1) satisfy

$$|V_n^*(f,x) - f(x)| \le M \left\{ \frac{x(1+x)}{n} + \frac{1}{3n^2} \right\}^{\frac{1}{2}},$$
(3.3)

respectively for $f \in Lip_M(\alpha)$, $x \geq \frac{\sqrt{3}}{3}$ and $n \in N$. It follows from (3.2) that the rate of convergence of the operators V_n^{**} for the Lipschitz class functions is better than the error estimation given by (3.3) whenever $x \ge \frac{\sqrt{3}}{3}.$

QIULAN QI AND GE YANG

4. A VORONOVSKAYA-TYPE THEOREM

Along the same lines of the proof of Theorem 4.2 in [1], we have a Voronovskayatype theorem for the operators V_n^{**} given by (1.2).

Theorem 5. For every $f \in C_{\beta}[0, +\infty)$ such that $f', f'' \in C_{\beta}[0, +\infty)$, we have

$$\lim_{n \to \infty} n \{ V_n^{**}(f, x) - f(x) \} = -\frac{1}{2} f'(x) + \frac{\varphi^2(x)}{2} f''(x)$$

uniformly with respect to $x \in [\frac{\sqrt{3}}{3}, b](b > \frac{\sqrt{3}}{3}).$

Acknowledgements. This work was partially supported by the NSF of Hebei Province(A2012205028) and NSF of Hebei Normal University (L2010Z02).

References

- O. Duman, M. A. Özarslan and B. D. Vecchia, Modified Szász-Mirakjan-Kantorovich operators preserving linear functions, *Turk J. Math.*, 33, (2009) 151–158.
- [2] J. P. King, Positive linear operators which preserve x², Acta Math. Hungarica, 99, (2003) 203-208.
- [3] O. Agratini, Linear operators that preserve some test functions, Int. J. Math. Math. Sci., Art. ID 94136, (2006) 1–11.
- [4] O. Agratini, On the iterates of a class of summation-type linear positive operators, Comput. Math. Appl., 55, (2008) 1178–1180.
- [5] H. Gonska, P. Piţul and I. Raşa, General King-type operators, Result. Math., 53, (2009) 279–286.
- [6] N. I. Mahmudov, Korovskin-type theorems and applications, Cent. Eur. J. Math., 7, (2009) 348–356.
- [7] L. Rempulska, K. Tomczak, Approximation by certain linear operators preserving x², Turk. J. Math., 33, (2009) 273–281.
- [8] Zhanjie Song, The Pointwise Estimate for Three Kinds of Baskakov-type Operators, Southeast Asian Bulletin of Mathematics, 28, (2004) 561–571.

College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, P.R.China *E-mail address*: qiqiulan@163.com, yanggeshida@163.com