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ON A DECOMPOSITION OF T, /- SPACES

NEELAMEGARAJAN RAJESH AND ERDAL EKICI

Abstract. The aim of this paper is to introduce Tg-spaces, ¢T5-spaces and
oTj-spaces. Moreover, we obtain a decomposition of T /5-spaces and we in-
vestigate properties of these spaces.

1. INTRODUCTION

Levine [8] introduced the notion of T /y-spaces which properly lie between T -
spaces and To-spaces. Many authors studied properties of Ty /;-spaces: Dunham
[6], Arenas et al. [2] etc. In this paper, we introduce the notions called Tg-spaces,
¢ Tg-spaces and ,Tj-spaces. Also, by using these spaces, we obtain a decomposi-
tion of T, /5-spaces.

Throughout this paper, (X, 7), (Y, o), and (Z,n) represent non-empty topologi-
cal spaces on which no separation axioms are assumed, unless otherwise mentioned.
For a subset A of a space (X, 7), cl(A), int(A) and A° denote the closure of A, the
interior of A and the complement of A, respectively.

A subset A is said to be a-open [10] (resp. semi-open [7], semi-preopen [1])
if ACint(cl(int(A))) (resp. ACcl(int(A)), ACcl(int(cl(A)))). The complement of
a-open (resp. semi-open, semi-preopen) set is said to be a-closed (resp. semi-
closed, semi-preclosed). The intersection of all a-closed sets of X containing A is
called a-closure of A and denoted by a-cl(A) [10]. Similarly, scl(A) and spcl(A)
are defined in [7] and [1], respectively.

A subset A of a space X is called a generalized closed (briefly g-closed) set [8]
if cl(A)CU whenever ACU and U is open in (X, 7), a-generalized closed (briefly
ag-closed) set [9] if acl(A)CU whenever ACU and U is open in (X, 7), generalized
semi-pre-closed (briefly gsp-closed) set [5] if spcl(A)CU whenever ACU and U is
open in (X, 7), w-closed set [13] if cI(A)CU whenever ACU and U is semi-open in
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(X, 7), g*-closed set [14] if cl(A)CU whenever ACU and U is g-open in (X, 7),*g-
closed set [15] if ¢I(A)CU whenever ACU and U is w-open in (X, 7), #g-closed set
[16] if c1(A)CU whenever ACU and U is *g-open in (X, 7), #g-semi-closed (briefly
#gs-closed) set [17] if scl(A)CU whenever ACU and U is *g-open in (X, 7)., g-closed
set [11] if cl(A)CU whenever ACU and U is #gs-open in (X, 7) and g-semi-closed
(briefly gs-closed) set [12] if scl(A)CU whenever ACU and U is #gs-open in (X,
7). The complements of the above mentioned sets are called their respective open
sets. The family of all g-open (resp. w-open and g-closed) sets in (X, 7) denoted
by (resp. GO(X, 7) (resp. 7 and GC(X,1))).

A space (X, 7) is called a Ty p-space [8] if every g-closed set is closed, a semi-
pre-T s»-space [8] if every gsp-closed set is semi-preclosed, Ty-space[4] if every
gs-closed set is closed, ,T)-space [3] if every ag-closed set is closed, ,Ty-space
[3] if every ag-closed set is g-closed, T,-space [13] if every w-closed set is closed,
T} )o-space [14] if every g*-closed set is closed, *T/y-space [15] if every *g-closed
set is closed, ,,sTﬁ?—space [17] if every #g-semi-closed set is closed, Tgs-space [12]

PEESVE:
if every g-semi-closed set is closed, a-space [10] if every a-closed set is closed.
2. Ty SPACES
We introduce the following definition

Definition 2.1. A space (X, 1) is called a Tj-space if every g-closed set in it is
closed.

Example 2.2. Let X={a,b,c} and 7 = {@,{a}, X}. GC(X,7)={2,{b,c},X}.
Thus (X, 7) is a Tj-space.

Example 2.3. Let X={a,b,c} and 7 = {2, {a,b}, X}.
GC(X,7)={2,{c},{b;c},{a,c},X}. Thus (X, 1) is not a Ty-space.

Proposition 2.4. Every Ty s-space is Tg-space but not conversely.

Proof. Follows from Theorem 3.4 [11]. O

The converse of the above Proposition need not be true as seen from the fol-
lowing example.

Example 2.5. Let X and 7 as in the example 2.2,
GO(X, 1) = {@,{b}. {c}.{a,b}, {b,c}, X}. Thus (X, ) is not a T} »-space.

Proposition 2.6. Every T, -space is Ty-space but not conversely.

Proof. Follows from Theorem 2.4 [11]. O

The converse of the above Proposition 2.6 need not be true as seen from the
following example.
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Example 2.7. Let X={a,b,c} and 7 = {@,{a},{b,c}, X}. Then 1¥= P(X) and
G’C(X, 7)={@,{a},{b,c}, X}. Thus the space (X,7) is Ty-space but not a T,-
space.

Proposition 2.8. Every g4 Tf&/Q—space is Tg-space but not conversely.

Proof. Follows from Theorem 3.9 [11]. O

The converse of the above Proposition 2.8 need not be true as seen from the
following example.

Example 2.9. The space (X, T) in the Example 2.2 is a Tj-space but not a
95 ﬁ/Q—space.

Proposition 2.10. Every Tj,-space is Tg-space but not conversely.

Proof. Follows from Theorem 3.7 [11]. O

The converse of the above Proposition 2.10 need not be true as seen from the
following example.

Example 2.11. The space (X, 7) in the exzample 2.2 is a Tg-space but not a
T5,-space.

Proposition 2.12. Every Ty-space is Tj-space but not conversely.

Proof. Follows from Theorem 3.11 [11]. O

Example 2.13. The space (X, 7) in the ezample 2.2 is Ty-space but not a Ty-
space.

Remark 2.14. Tj-space and a-space are independent.

Example 2.15. The space (X, 7) in the Example 2.2 is a Tj-space but not a
a-space and space (X, 7) in the Example 2.3 is an a-space but not a Tg-space.

Remark 2.16. Tj-space and semi-pre-T) s5-space are independent.

Example 2.17. The space (X, ) in the ezample 2.2 is a Tg-space but not a semi-
pre-Ti j3-space and the space (X, 7) in the example 2.3 is a semi-pre- T, j2-space
but not Ty-space.

Remark 2.18. Tj-space and * T, j5-space are independent.

Example 2.19. The space (X, 7) in the example 2.7 is a Ty-space but not * Ty /s-
space. The space (X, T) in the example 2.3 is a * T j2-space but not a Ty-space.

Theorem 2.20. For a space (X, T) the following properties are equivalent:
(1). (X, 1) is a Ty-space,
(ii). Every singleton subset of (X, ) is either ¥ g-semi-closed or open.
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Proof. (i)=(ii): Assume that for some x€X, the set {z} is not a #gs-closed in (X,
7). Then the only #gs-open set containing {z}¢ is X and so {z}¢ is g-closed in (X,
7).By assumption {z}¢ is closed in (X, 7) or equivalently {z} is open.

(i)=>(i): Let A be a g-closed subset of (X, 7) and let x€CI(A). By assumption
{x} is either #gs-closed or open. O

Case (i): Suppose {z} is #gs-closed. If x¢A, then CI(A)-A contains a non-
empty #gs-closed set {x},which is a contradiction to Theorem 3.21 [11]. Therefore
x€A.

Case (ii): Suppose {z} is open. Since x€Cl(A), {z}(A# @ and therefore
CI(A)CA or equivalently A is a closed set of (X, 7).

Definition 2.21. A topological space (X, T) is said to be
(1) #gs-Ty if for x, y€X such that a#y there exists a #gs-open set U of X con-
taining © but not y or a ¥ gs-open set V of X containing y but not z,

(2) #gs-T if for distinct points x, y€ X, there exists a * gs-open set U of X con-
taining x but not y and a ¥ gs-open set V of X containing y but not .

Lemma 2.22. Let (X, 7) be a topological space. X is ¥ gs-Ty if and only if for
each 2€ X, the singleton {z} is # gs-closed.

Theorem 2.23. For a topological space (X, ), the following properties hold:
(1) if (X, 7) is #gs-Th, then it is Tj,
(2) if (X, ) is Ty, then it is # gs-T.

Proof. (1) The proof is obvious from Lemma 2.22.

(2) Let x and y be two distinct elements of X. Since the space (X, 7) is Ty, we
have that {z} is #gs-closed or open. Suppose that {z} is open. Then the singleton
{z} is a #gs-open set such that x€ {z} and y¢ {z}. Also, if {2} is #gs-closed,
then X\{z} is #gs-open such that yeX\{z} and x¢X\{z}. Thus, in the above
two cases, there exists a #gs-open set U of X such that x€U and y¢U or x¢U and
y€U. Thus, the space (X, 7) is #gs-To. O

Definition 2.24. Let (X, 7) be a topological space and ACX. We define the # gs-

closure of A (briefly # gs-cl(A)) to be the intersection of all # gs-closed sets con-
taining A.

Definition 2.25. A topological space (X, 7) is said to be # gs-Ry if every # gs-open
set contains the # gs-closure of each of its singletons.

Theorem 2.26. For a # gs-Ry topological space (X, 7), the following properties
are equivalent:

(1) (X, 7) is #gs-T,,
(2) (X, 7) is Ty,
(3) (X, 7) is #gs-T.
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Proof. 1t suffices to prove only (1)=(3).

Let x#y and since (X, 7) is #gs-Tp, we may assume that xeUCX\{y} for some
#gs-open set U. Then xeX\#gs-cl({y}) and X\#gs-cl({y}) is #gs-open. Since
(X, 7) is #gs-Ro, we have #gs-cl({z}) CX\#gs-cl({y})CX\{y} and hence y¢¥ gs-
cl({z}). There exists #gs-open set V such that yeVCX\{z} and (X, 7) is a
#gs-T-space. a

3. 4T3-SPACES

Definition 3.1. A space (X, 7) is called a ,Ty-space if every g-closed set of (X,
7) is a g-closed set in (X, 7).

Example 3.2. The space (X, 7) in the Example 2.5 is a 4 T;-space and the space
(X, 7) in the Example 2.2 is not a , Tz-space.

Proposition 3.3. Every Ty ;-space is , Tz-space but not conversely.
Proof. Follows from Theorem 3.2 [11]. O

Example 3.4. The space (X, 7) in the Ezample 2.3 is a ,Tj-space but not a
T, j2-space.

Remark 3.5. Tj-space and a 4 Tj-space are independent.

Example 3.6. The space (X, 7) in the Ezample 2.3 is a ,Tg-space but not Tg-
space and the space (X, ) in the Example 2.2 is Ty-space but not a , Tg-space.

Remark 3.7. T{/Q -space and a , Tg-space are independent.

Example 3.8. The space (X, 7) in the Example 2.3 is a , T-space but not Tf/z‘

space and the space (X, 7) in the Example 2.2 is T‘{/2—space but not a 4 Tj-space.
Remark 3.9. *T} /5-space and a , T5-space are independent.

Example 3.10. The space (X, 7) in the Ezample 2.3 is a 4 Tg-space but not *T} /-
space and the space (X, 7) in the Example 2.7 is *Ty j>-space but not a , T5-space.

Theorem 3.11. If (X, 7) is a 4 Tz-space, then every singleton subset of (X, 7) is
either g-closed or g-open.

Proof. Assume that for some xeX, the set {z} is not a g-closed in (X, 7). Then
the only open set containing {z}¢ is X itself and so {z}° is g-closed in (X, 7). By
assumption, {z}¢ is a g-closed set in (X, 7) or equivalently {z} is g-open. O

The converse of the above Theorem 3.11 need not be true as seen from the
following example.

Example 3.12. Let X and 7 be as in the Example 2.2. The sets {b} and {c}
are g-closed in (X, 7) and the set {a} is g-open. But the space (X, T) is not a
¢ T5-space.

Theorem 3.13. A space (X, 7) is Ty if and only if it is both T and ,Tj.
Proof. Necessity follows from Propositions 2.3 and 3.3. O
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Sufficiency: Assume that (X, 7) is both Ty and ,T3. Let A be a g-closed set
of (X, 7). Then A is g-closed again by assumption A is closed in (X, 7). Therefore
(X, 7) is a Ty so-space.

4. oT5-SPACES

Definition 4.1. A space (X, 7) is called a ,T5-space if every ag-closed set of (X,
7) is a g-closed set in (X, 7).

Example 4.2. The space (X, 7) in the Example 2.3 is a T5-space and the space
(X, 7) in the Example 2.2 is not a ,Tg-space.

Proposition 4.3. Every , Tj-space is o Tg-space but not conversely.
Proof. Follows from Theorem 3.2 [11]. O

Example 4.4. The space (X, 7) in the Ezample 2.3 is a oTj-space but not a
o Ty-space.

Proposition 4.5. Every Ty-space is o Tq-space but not conversely.

Proof. Let (X, 7) be an ,Tj-space and let A be an ag-closed set of (X, 7). Then
A is a g-closed subset of (X, 7) and by Theorem 3.4 [11], A is g-closed. Therefore
(X, 7) is an o T4-space. O

The converse of the above Proposition 4.5 need not be true as seen from the
following example.

Example 4.6. The space (X, 7) in the Example 2.2 is a 4T4-space but not a
oT-space.

Theorem 4.7. If (X, 7) is a «Ty-space, then every singleton subset of (X, 7) is
either ag-closed or g-open.

Proof. Similar to Theorem 3.11. O

The converse of the above Theorem 4.7 need not be true as seen from the
following example.

Example 4.8. Let X and 7 be as in the Example 2.2. Then the sets {b} and {c}
are g-closed in (X, 7) and the set {a} is g-open. But the space (X, 7) is not a
g Tg-space.
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