Math. Maced. Vol. 3 (2005) 7-13

ON A DECOMPOSITION OF $T_{1/2}$ - SPACES

NEELAMEGARAJAN RAJESH AND ERDAL EKICI

Abstract. The aim of this paper is to introduce $T_{\widetilde{g}}$ -spaces, ${}_{g}T_{\widetilde{g}}$ -spaces and ${}_{\alpha}T_{\overline{g}}$ -spaces. Moreover, we obtain a decomposition of $T_{1/2}$ -spaces and we investigate properties of these spaces.

1. Introduction

Levine [8] introduced the notion of $T_{1/2}$ -spaces which properly lie between T_1 -spaces and T_0 -spaces. Many authors studied properties of $T_{1/2}$ -spaces: Dunham [6], Arenas et al. [2] etc. In this paper, we introduce the notions called $T_{\tilde{g}}$ -spaces, ${}_gT_{\tilde{g}}$ -spaces and ${}_\alpha T_{\tilde{g}}$ -spaces. Also, by using these spaces, we obtain a decomposition of $T_{1/2}$ -spaces.

Throughout this paper, (X, τ) , (Y, σ) , and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A, respectively.

A subset A is said to be α -open [10] (resp. semi-open [7], semi-preopen [1]) if $A\subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ (resp. $A\subseteq \operatorname{cl}(\operatorname{int}(A))$, $A\subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$). The complement of α -open (resp. semi-open, semi-preopen) set is said to be α -closed (resp. semi-closed, semi-preclosed). The intersection of all α -closed sets of X containing A is called α -closure of A and denoted by α -cl(A) [10]. Similarly, scl(A) and spcl(A) are defined in [7] and [1], respectively.

A subset A of a space X is called a generalized closed (briefly g-closed) set [8] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in (X,τ) , α -generalized closed (briefly α g-closed) set [9] if $\alpha cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in (X,τ) , generalized semi-pre-closed (briefly gsp-closed) set [5] if $spcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in (X,τ) , ω -closed set [13] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is semi-open in

²⁰⁰⁰ Mathematics Subject Classification. 54D10, 54A05.

Key words and phrases. $T_{\tilde{g}}$ -space, ${}_{g}T_{\tilde{g}}$ -space, ${}_{\alpha}T_{\tilde{g}}$ -space, $T_{1/2}$ -space, generalized sets.

 $(X,\tau),\ g^*$ -closed set [14] if $\operatorname{cl}(A)\subseteq U$ whenever $A\subseteq U$ and U is g-open in $(X,\tau), ^*$ g-closed set [15] if $\operatorname{cl}(A)\subseteq U$ whenever $A\subseteq U$ and U is ω -open in $(X,\tau), ^*$ g-closed set [16] if $\operatorname{cl}(A)\subseteq U$ whenever $A\subseteq U$ and U is * g-open in $(X,\tau), ^*$ g-semi-closed (briefly * gs-closed) set [17] if $\operatorname{scl}(A)\subseteq U$ whenever $A\subseteq U$ and U is * g-open in $(X,\tau), ^*$ g-closed set [11] if $\operatorname{cl}(A)\subseteq U$ whenever $A\subseteq U$ and U is * gs-open in (X,τ) and * g-semi-closed (briefly * gs-closed) set [12] if $\operatorname{scl}(A)\subseteq U$ whenever $A\subseteq U$ and U is * gs-open in (X,τ) . The complements of the above mentioned sets are called their respective open sets. The family of all g-open (resp. ω -open and * g-closed) sets in (X,τ) denoted by (resp. $\operatorname{GO}(X,\tau)$ (resp. τ^ω and $\widetilde{GC}(X,\tau)$).

A space (X, τ) is called a $T_{1/2}$ -space [8] if every g-closed set is closed, a semi-pre- $T_{1/2}$ -space [8] if every gsp-closed set is semi-preclosed, T_b -space[4] if every gs-closed set is closed, αT_b -space [3] if every αg -closed set is closed, αT_d -space [3] if every αg -closed set is closed, T_b -space [13] if every ω -closed set is closed, $T_{1/2}$ -space [14] if every $T_{1/2}$ -space [15] if every $T_{1/2}$ -space [16] if every $T_{1/2}$ -space [17] if every $T_{1/2}$ -space [18] if ever

2. $T_{\widetilde{q}}$ SPACES

We introduce the following definition

Definition 2.1. A space (X, τ) is called a $T_{\widetilde{g}}$ -space if every \widetilde{g} -closed set in it is closed.

Example 2.2. Let $X=\{a,b,c\}$ and $\tau=\{\varnothing,\{a\},X\}$. $\widetilde{G}C(X,\tau)=\{\varnothing,\{b,c\},X\}$. Thus (X,τ) is a $T_{\widetilde{g}}$ -space.

Example 2.3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. $\widetilde{GC}(X, \tau) = \{\emptyset, \{c\}, \{b, c\}, \{a, c\}, X\}$. Thus (X, τ) is not a $T_{\widetilde{g}}$ -space.

Proposition 2.4. Every $T_{1/2}$ -space is $T_{\tilde{g}}$ -space but not conversely.

Proof. Follows from Theorem 3.4 [11].

The converse of the above Proposition need not be true as seen from the following example.

Example 2.5. Let X and τ as in the example 2.2, $GO(X,\tau) = \{\emptyset, \{b\}, \{c\}, \{a,b\}, \{b,c\}, X\}$. Thus (X,τ) is not a $T_{1/2}$ -space.

Proposition 2.6. Every T_{ω} -space is $T_{\widetilde{g}}$ -space but not conversely.

Proof. Follows from Theorem 2.4 [11].

The converse of the above Proposition 2.6 need not be true as seen from the following example.

Example 2.7. Let $X=\{a,b,c\}$ and $\tau=\{\varnothing,\{a\},\{b,c\},X\}$. Then $\tau^{\omega}=P(X)$ and $\widetilde{G}C(X,\tau)=\{\varnothing,\{a\},\{b,c\},X\}$. Thus the space (X,τ) is $T_{\widetilde{g}}$ -space but not a T_{ω} -space.

Proposition 2.8. Every $_{gs}T_{1/2}^{\#}$ -space is $T_{\widetilde{g}}$ -space but not conversely.

Proof. Follows from Theorem 3.9 [11].

The converse of the above Proposition 2.8 need not be true as seen from the following example.

Example 2.9. The space (X, τ) in the Example 2.2 is a $T_{\tilde{g}}$ -space but not a $gs\ T_{1/2}^{\#}$ -space.

Proposition 2.10. Every $T_{\tilde{g}s}$ -space is $T_{\tilde{g}}$ -space but not conversely.

Proof. Follows from Theorem 3.7 [11].

The converse of the above Proposition 2.10 need not be true as seen from the following example.

Example 2.11. The space (X, τ) in the example 2.2 is a $T_{\widetilde{g}}$ -space but not a $T_{\widetilde{g}s}$ -space.

Proposition 2.12. Every T_b -space is $T_{\widetilde{g}}$ -space but not conversely.

Proof. Follows from Theorem 3.11 [11].

Example 2.13. The space (X, τ) in the example 2.2 is $T_{\tilde{g}}$ -space but not a T_b -space.

Remark 2.14. $T_{\widetilde{g}}$ -space and α -space are independent.

Example 2.15. The space (X, τ) in the Example 2.2 is a $T_{\widetilde{g}}$ -space but not a α -space and space (X, τ) in the Example 2.3 is an α -space but not a $T_{\widetilde{g}}$ -space.

Remark 2.16. $T_{\tilde{g}}$ -space and semi-pre- $T_{1/2}$ -space are independent.

Example 2.17. The space (X, τ) in the example 2.2 is a $T_{\widetilde{g}}$ -space but not a semi-pre- $T_{1/2}$ -space and the space (X, τ) in the example 2.3 is a semi-pre- $T_{1/2}$ -space but not $T_{\widetilde{g}}$ -space.

Remark 2.18. $T_{\widetilde{g}}$ -space and * $T_{1/2}$ -space are independent.

Example 2.19. The space (X, τ) in the example 2.7 is a $T_{\widetilde{g}}$ -space but not * $T_{1/2}$ -space. The space (X, τ) in the example 2.3 is a * $T_{1/2}$ -space but not a $T_{\widetilde{g}}$ -space.

Theorem 2.20. For a space (X, τ) the following properties are equivalent: (i). (X, τ) is a $T_{\widetilde{a}}$ -space,

(ii). Every singleton subset of (X, τ) is either #g-semi-closed or open.

- *Proof.* (i) \Rightarrow (ii): Assume that for some $x \in X$, the set $\{x\}$ is not a #gs-closed in (X, τ) . Then the only #gs-open set containing $\{x\}^c$ is X and so $\{x\}^c$ is g-closed in (X, τ) . By assumption $\{x\}^c$ is closed in (X, τ) or equivalently $\{x\}$ is open.
- (ii) \Rightarrow (i): Let A be a g-closed subset of (X, τ) and let $x \in Cl(A)$. By assumption $\{x\}$ is either #gs-closed or open.
- Case (i): Suppose $\{x\}$ is #gs-closed. If $x \notin A$, then Cl(A)-A contains a non-empty #gs-closed set $\{x\}$, which is a contradiction to Theorem 3.21 [11]. Therefore $x \in A$.
- Case (ii): Suppose $\{x\}$ is open. Since $x \in Cl(A)$, $\{x\} \cap A \neq \emptyset$ and therefore $Cl(A) \subseteq A$ or equivalently A is a closed set of (X, τ) .

Definition 2.21. A topological space (X, τ) is said to be

- (1) # gs-T₀ if for x, $y \in X$ such that $x \neq y$ there exists a # gs-open set U of X containing x but not y or a # gs-open set V of X containing y but not x,
- (2) # gs- T_1 if for distinct points x, $y \in X$, there exists a # gs-open set U of X containing x but not y and a # gs-open set V of X containing y but not x.
- **Lemma 2.22.** Let (X, τ) be a topological space. X is #gs- T_1 if and only if for each $x \in X$, the singleton $\{x\}$ is #gs-closed.

Theorem 2.23. For a topological space (X, τ) , the following properties hold:

- (1) if (X, τ) is $\#gs\text{-}T_1$, then it is $T_{\widetilde{g}}$,
- (2) if (X, τ) is $T_{\widetilde{g}}$, then it is #gs- T_0 .

Proof. (1) The proof is obvious from Lemma 2.22.

- (2) Let x and y be two distinct elements of X. Since the space (X, τ) is $T_{\widetilde{g}}$, we have that $\{x\}$ is #gs-closed or open. Suppose that $\{x\}$ is open. Then the singleton $\{x\}$ is a #gs-open set such that $x \in \{x\}$ and $y \notin \{x\}$. Also, if $\{x\}$ is #gs-closed, then $X \setminus \{x\}$ is #gs-open such that $y \in X \setminus \{x\}$ and $x \notin X \setminus \{x\}$. Thus, in the above two cases, there exists a #gs-open set U of X such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. Thus, the space (X, τ) is #gs- T_0 .
- **Definition 2.24.** Let (X, τ) be a topological space and $A \subseteq X$. We define the # gs-closure of A (briefly # gs-cl(A)) to be the intersection of all # gs-closed sets containing A.

Definition 2.25. A topological space (X, τ) is said to be $\#gs-R_0$ if every #gs-open set contains the #gs-closure of each of its singletons.

Theorem 2.26. For a # gs-R₀ topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\# gs-T_0$,
- (2) (X, τ) is $T_{\widetilde{g}}$,
- (3) (X, τ) is $\# gs-T_1$.

Proof. It suffices to prove only $(1) \Rightarrow (3)$.

Let $x\neq y$ and since (X, τ) is $\#gs-T_0$, we may assume that $x\in U\subseteq X\setminus \{y\}$ for some #gs-open set U. Then $x\in X\setminus \#gs-cl(\{y\})$ and $X\setminus \#gs-cl(\{y\})$ is #gs-open. Since (X, τ) is $\#gs-R_0$, we have $\#gs-cl(\{x\})\subseteq X\setminus \{y\}$ and hence $y\notin \#gs-cl(\{x\})$. There exists #gs-open set V such that $y\in V\subseteq X\setminus \{x\}$ and (X, τ) is a $\#gs-T_1$ -space. \square

3. $_g T_{\widetilde{g}}$ -spaces

Definition 3.1. A space (X, τ) is called a ${}_gT_{\widetilde{g}}$ -space if every g-closed set of (X, τ) is a \widetilde{g} -closed set in (X, τ) .

Example 3.2. The space (X, τ) in the Example 2.3 is a $_g T_{\tilde{g}}$ -space and the space (X, τ) in the Example 2.2 is not a $_g T_{\tilde{g}}$ -space.

Proposition 3.3. Every $T_{1/2}$ -space is ${}_{g}T_{\widetilde{g}}$ -space but not conversely.

Proof. Follows from Theorem 3.2 [11].

Example 3.4. The space (X, τ) in the Example 2.3 is a ${}_gT_{\widetilde{g}}$ -space but not a $T_{1/2}$ -space.

Remark 3.5. $T_{\tilde{g}}$ -space and a $_{g}T_{\tilde{g}}$ -space are independent.

Example 3.6. The space (X, τ) in the Example 2.3 is a $_gT_{\widetilde{g}}$ -space but not $T_{\widetilde{g}}$ -space and the space (X, τ) in the Example 2.2 is $T_{\widetilde{g}}$ -space but not a $_gT_{\widetilde{g}}$ -space.

Remark 3.7. $T_{1/2}^*$ -space and a $_g$ $T_{\tilde{g}}$ -space are independent.

Example 3.8. The space (X, τ) in the Example 2.3 is a $_gT_{\widetilde{g}}$ -space but not $T_{1/2}^*$ -space and the space (X, τ) in the Example 2.2 is $T_{1/2}^*$ -space but not a $_gT_{\widetilde{g}}$ -space.

Remark 3.9. ${}^*T_{1/2}$ -space and a ${}_{g}T_{\widetilde{g}}$ -space are independent.

Example 3.10. The space (X, τ) in the Example 2.3 is a $_g$ $T_{\widetilde{g}}$ -space but not $^*T_{1/2}$ -space and the space (X, τ) in the Example 2.7 is $^*T_{1/2}$ -space but not a $_g$ $T_{\widetilde{g}}$ -space.

Theorem 3.11. If (X, τ) is a ${}_{g}T_{\widetilde{g}}$ -space, then every singleton subset of (X, τ) is either g-closed or \widetilde{g} -open.

Proof. Assume that for some $x \in X$, the set $\{x\}$ is not a g-closed in (X, τ) . Then the only open set containing $\{x\}^c$ is X itself and so $\{x\}^c$ is g-closed in (X, τ) . By assumption, $\{x\}^c$ is a \tilde{g} -closed set in (X, τ) or equivalently $\{x\}$ is \tilde{g} -open.

The converse of the above Theorem 3.11 need not be true as seen from the following example.

Example 3.12. Let X and τ be as in the Example 2.2. The sets $\{b\}$ and $\{c\}$ are g-closed in (X, τ) and the set $\{a\}$ is \widetilde{g} -open. But the space (X, τ) is not a ${}_{g}T_{\widetilde{g}}$ -space.

Theorem 3.13. A space (X, τ) is $T_{1/2}$ if and only if it is both $T_{\widetilde{g}}$ and ${}_{g}T_{\widetilde{g}}$.

Proof. Necessity follows from Propositions 2.3 and 3.3.

Sufficiency: Assume that (X, τ) is both $T_{\widetilde{g}}$ and ${}_{g}T_{\widetilde{g}}$. Let A be a g-closed set of (X, τ) . Then A is \widetilde{g} -closed again by assumption A is closed in (X, τ) . Therefore (X, τ) is a $T_{1/2}$ -space.

4. $_{\alpha}T_{\widetilde{g}}$ -SPACES

Definition 4.1. A space (X, τ) is called a ${}_{\alpha}T_{\widetilde{g}}$ -space if every αg -closed set of (X, τ) is a \widetilde{g} -closed set in (X, τ) .

Example 4.2. The space (X, τ) in the Example 2.3 is a ${}_{\alpha}T_{\tilde{g}}$ -space and the space (X, τ) in the Example 2.2 is not a ${}_{\alpha}T_{\tilde{g}}$ -space.

Proposition 4.3. Every $_{\alpha}T_{b}$ -space is $_{\alpha}T_{\widetilde{g}}$ -space but not conversely.

Proof. Follows from Theorem 3.2 [11].

Example 4.4. The space (X, τ) in the Example 2.3 is a $_{\alpha}T_{\tilde{g}}$ -space but not a $_{\alpha}T_{b}$ -space.

Proposition 4.5. Every $_{\alpha}T_{\tilde{q}}$ -space is $_{\alpha}T_{d}$ -space but not conversely.

Proof. Let (X, τ) be an ${}_{\alpha}T_{\widetilde{g}}$ -space and let A be an ${}_{\alpha}g$ -closed set of (X, τ) . Then A is a \widetilde{g} -closed subset of (X, τ) and by Theorem 3.4 [11], A is g-closed. Therefore (X, τ) is an ${}_{\alpha}T_{d}$ -space.

The converse of the above Proposition 4.5 need not be true as seen from the following example.

Example 4.6. The space (X, τ) in the Example 2.2 is a $_{\alpha}T_d$ -space but not a $_{\alpha}T_{\widetilde{g}}$ -space.

Theorem 4.7. If (X, τ) is a ${}_{\alpha}T_{\widetilde{g}}$ -space, then every singleton subset of (X, τ) is either αg -closed or \widetilde{g} -open.

Proof. Similar to Theorem 3.11.

The converse of the above Theorem 4.7 need not be true as seen from the following example.

Example 4.8. Let X and τ be as in the Example 2.2. Then the sets $\{b\}$ and $\{c\}$ are g-closed in (X, τ) and the set $\{a\}$ is \widetilde{g} -open. But the space (X, τ) is not a g $T_{\widetilde{g}}$ -space.

REFERENCES

[1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.

[2] F. G. Arenas, J. Dontchev and M. Ganster, On λ-sets and dual of generalized continuity, Questions Answers Gen. Topology, 15 (1997), 3-13.

[3] R. Devi, K. Balachandran and H. Maki, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure Appl. Math., 29 (1998), 37-49.

[4] R. Devi, K. Balachandran and H. Maki, Semi generalized closed maps and generalized semiclosed maps, Mem. Fac. Kochi Univ. Ser. A. Math., 14 (1993), 41-54.

- [5] J. Dontchev, On generalizing semi-pre-open sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16 (1995), 35-48.
- [6] W. Dunham, T_{1/2}-spaces, Kyungpook Math. J., **17** (1977), 161-169.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Month., 70 (1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96.
- [9] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15 (1994), 51-63.
- [10] O. Njastad, On some classes of nearly open sets, Pacific J.Math., 15 (1965),961-970.
- [11] N. Rajesh and M. L. Thivagar, \tilde{g} -closed sets in topological spaces, communicated.
- [12] N. Rajesh and M. L. Thivagar, \tilde{g} -Semi-closed sets in topological spaces, communicated.
- [13] P. Sundaram and M. Sheik John, Weakly closed sets and weak continuous maps in topological spaces, Proc. 82nd Indian Sci. Cong. Calcutta, (1995), 49.
- [14] M. K. R. S. Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Kochi Univ. Ser. A. Math., 21 (2000), 1-19.
- [15] M. K. R. S. Veera Kumar, Between *g-closed sets and g-closed sets, reprint.
- [16] M. K. R. S. Veera Kumar, #g-Closed sets in topological spaces, reprint.
- [17] M. K. R. S. Veera Kumar, #g-Semi-closed sets in topological spaces, reprint.

DEPARTMENT OF MATHEMATICS, PONNAIYAH RAMAJAYAM COLLEGE, THANJAVUR-614904, TAMILNADU/INDIA

E-mail address: nrajesh_topology@yahoo.co.in

DEPARTMENT OF MATHEMATICS, CANAKKALE ONSEKIZ MART UNIVERSITY, TERZIOGLU CAMPUS, 17020 CANAKKALE/TURKEY

E-mail address: eekici@comu.edu.tr