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REVERSE ORDER LAW FOR THE MOORE-PENROSE
INVERSE OF CLOSED-RANGE ADJOINTABLE OPERATORS

ON HILBERT C∗-MODULES

DRAGAN S. DJORDJEVIĆ

Abstract. Results related to bounded andjointable operators on Hilbert C∗-
modules are presented. Results concerning generalized inverses are included.

1. Introduction

Let A be a complex C∗-algebra with the norm ‖ · ‖, and let M be a complex
linear space. M is a (right) A-module, provided that there exists an exterior
multiplication · :M×A→M, obeying the following properties, for all x, y ∈M,
all a, b ∈ A and all λ ∈ C:

(x+ y) · a = x · a+ y · a; x · (a+ b) = x · a+ y · b;
x · (ab) = (x · a) · b; λ(xa) = (λx)a = x(λa).

If M is an A-module, then the A-valued inner product is the function 〈·, ·〉 :
M×M→ A, satisfying the following conditions, for all x, y ∈M, all a ∈ A:
〈x, x〉 ≥ 0 in A; x = 0 if and only if 〈x, x〉 = 0;
〈x, y〉 = 〈y, x〉∗; 〈x, λy + µz〉 = λ〈x, y〉+ µ〈x, z〉;
〈x, y · a〉 = 〈x, y〉a.
Thus,M becomes a pre-Hilbert A-module.
The norm on a pre-Hilbert A-moduleM is defined by ‖x‖M = ‖〈x, x〉‖1/2. This

norm satisfies some nice properties, which are related to the Cauchy-Bunyakovsky-
Schwarz inequality:
〈x, y〉〈y, x〉 ≤ ‖y‖2M 〈x, x〉, for all x, y ∈M;
‖x · a‖M ≤ ‖x‖M ‖a‖, for all x ∈M and all a ∈ A;
‖〈x, y〉‖ ≤ ‖x‖M‖y‖M for all x, y ∈M.
Finally, ifM is a Banach space with respect to the norm ‖ · ‖M, thenM is a

Hilbert A-module. We also say thatM is a Hilbert C∗-module (over A). If H is a
complex Hilbert space, then H is a Hilbert C-module. Hence, Hilbert C∗-modules
are between Hilbert spaces and Banach spaces.
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LetM,N be Hilbert A-modules, and let T :M→ N be a linear mapping. T
is an operator, if T is bounded (as an operator between Banach spaces) and T is
A-linear, i.e. T (x · a) = T (x) · a for all x ∈M and all a ∈ A.

If T is an operator fromM to N , and there exists an operator T ∗ from N to
M satisfying 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ M and all y ∈ N , them T ∗ is the
adjoint of T , and T is adjointable. Notice that there exist operators which are not
adjointable. We use Hom∗(M,N ) to denote the set of all adjointable operators
fromM to N . Recall that End∗(M) = Hom∗(M,M) is a C∗-algebra.

If T ∈ Hom∗(M,N ), then R(T ) denote the range of T , and N (T ) denote the
kernel of T . Notice that N (T ) is always closed.

Among the situation that there exists non-adjointable operators between Hilbert
A-modules, there also is the following non-convenient situation. Let K be a closed
submodule ofM. The orthogonal complement of K is defined as K⊥ = {x ∈M :
〈x, y〉 = 0 for all y ∈ K}. Although K⊥ is a closed submodule of M, we do not
have in generalM = K ⊕K⊥.

However, in the case which is the most important for this research, we have the
following result.

Theorem 1. ([9], [10]) LetM,N be a Hilbert A-modules, and let T ∈ Hom∗(M,N ).
If R(T ) is closed, then the following hold:
N (T ) is an orthogonally complemented submodule inM andM = R(T ∗)⊕N (T );
R(T ) is an orthogonally complemented submodule in N and N = R(T )⊕N (T ∗).

Previous result allows us to investigate adjointable operators between Hilbert
A-modules in a similar way as on Hilbert spaces. For detailed treatment of Hilbert
C∗-modules see [9] and [10].

Now, we have the usual definition of the Moore-Penrose inverse. Let T ∈
Hom∗(M,N ). The operator T † ∈ Hom∗(M,N ) is the Moore-Penrose inverse of
T , provided that the following holds:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T.

The Moore-Penrose inverse is unique in the case when it exists: this is standard
for all standard structures that admits the existence of the Moore-Penrose inverse.
Moreover, T † exists if and only if R(T ) is closed in N (see [14]).

In this paper we are interested in the reverse order law for the Moore-Penrose
inverse. If a, b are invertible elements in an unital semigroup, then (ab)−1 = b−1a−1

is the reverse order law for the ordinary inverse. However, the rule (ab)† = b†a†

does not hold in general for the Moore-Penrose inverse. If a, b are Moore-Penrose
invertible, then it does not follows that ab is also Moore-Penrose invertible. Since
we consider only Hilbert modules, we refer to the result which explain when the
product of two closed-range adjointalbe operators also has a closed range. One
equivalent condition is proved in [12].

In this paper we prove some equivalencies of the reverse order rule (AB)† =
B†A†, where A,B,AB are adjointable operators between Hilbert modules, that
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have closed ranges. This result is known in the case of bounded Hilbert space op-
erators, and in some parts in rings with involutions. We demostrate the usefulness
of Theorem 1 for the geometric theory of generalized inverse.

Let T ∈ Hom∗(M, N) has a closed range. Then T †T is the orthogonal projec-
tion fromM ontoR(T ∗), and TT † is the orthogonal projection fromN ontoR(T ).
Using these projections, we see that T has the following matrix decomposition:

T =

[
T1 0
0 0

]
:

[
R(T ∗)
N (T )

]
→

[
R(T )
N (T ∗)

]
.

The operator T1 is invertible and adjointable, so

T † =

[
T−11 0
0 0

]
:

[
R(T )
N (T ∗)

]
→

[
R(T ∗)
N (T )

]
.

This decomposition allows us to reduce some properties of non-invertible T to
invertible T1.

Previous representation is derived from block representations of operators on
Banach and Hilbert spaces, as well as Hilbert C∗-modules (see, for example, [4],
[6], [12], [13]). This representation, and derived ones, are systematically used in
the investigation of generalized inverses.

Let T ∈ Hom∗(M,N ) have a closed range. T is EP if and only if TT † = T †T .
Equivalently, T is EP if and only if R(T ) = R(T ∗) (see [12] for EP operators
on Hilbert modules). Obviously, T is EP if and only if T ∗ is EP. Notice that
selfadjoint and normal operators with closed range are EP operators.

We use [T, S] = TS − ST to denote the commutator of operators T and S. In
this paper we use the fact that if T and S are selfadjoint, then TS is selfadjoint if
and only if [T, S] = 0.

2. Results

We prove the following main result of this paper.

Theorem 2. Let A be a C∗-algebra, and letM,N ,K be Hilbert A-modules. Sup-
pose that A ∈ Hom∗(N ,K), B ∈ Hom∗(M,N ) be adjointable operators, such that
A,B,AB have closed ranges. Then the following statements are equivalent:

(a) (AB)† = B†A†;
(b) [A†A,BB∗] = 0 and [A∗A,BB†] = 0;
(c) R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗);
(d) A∗ABB∗ is EP.

Proof. Using previous ideas, we know that A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A1 is invertible, and consequently A† =
[
A−11 0
0 0

]
. Also, B =

[
B1 0
B2 0

]
:[

R(B∗)
N (B)

]
→

[
R(A∗)
N (A)

]
. Notice that D = B∗1B1 + B∗2B2 is positive and invertible

in End∗(R(B∗)). Hence, B† = (B∗B)†B∗ =

[
D−1B∗1 D−1B∗2

0 0

]
.
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We find equivalent forms of (a). Notice that AB =

[
A1B1 0
0 0

]
and B†A† =[

D−1B∗1A
−1
1 0

0 0

]
. Hence, (AB)† = B†A† if and only if (A1B1)

† = D−1B∗1A
−1
1 .

We have the following: A1B1(D
−1B∗1A

−1
1 )A1B1 = A1B1 if and only if

B1D
−1B∗1B1 = B1. (2.1)

Also, D−1B∗1A
−1
1 (A1B1)D

−1B∗1A
−1
1 = D−1B∗1A

−1
1 if and only if (2.1) holds. The

operator A1B1D
−1B∗1A

−1
1 is Hermitian if and only if

[A∗1A1, B1D
−1B∗1 ] = 0. (2.2)

Finally, D−1B∗1A
−1
1 A1B1 is Hermitian if and only if

[D,B∗1B1] = 0. (2.3)

Now we find equivalent forms of (b). We haveA†A =

[
I 0
0 0

]
, A∗A =

[
A∗1A1 0
0 0

]
,

BB∗ =

[
B1B

∗
1 B1B

∗
2

B2B
∗
1 B2B

∗
2

]
andBB† =

[
B1D

−1B∗1 B1D
−1B∗2

B2D
−1B∗1 B2D

−1B∗2

]
. Hence, [A†A,BB∗] =

0 if and only if
B1B

∗
2 = 0. (2.4)

Also, [A∗A,BB†] = 0 if and olny if

[A∗1A1, B1D
−1B∗1 ] = 0 (2.5)

and
B2D

−1B∗1 = 0. (2.6)
We find equivalent conditions for (c). Notice that R(A∗AB) ⊂ R(B) holds

if and only if BB†A∗AB = A∗AB. Also, R(BB∗A∗) ⊂ R(A∗) if and only if
A†ABB∗A∗ = BB∗A∗. From previous decompositions of operators we see that
A†ABB∗A∗ = BB∗A∗ if and only if

B2B
∗
1 = 0, (2.7)

which the same as (2.4). We have BB†A∗AB = A∗AB if and only if

B1D
−1B∗1A

∗
1A1B1 = A∗1A1B1 (2.8)

and
B2D

−1B∗1A
∗
1A1B1 = 0. (2.9)

Thus, (c) is equivalent to (2.7), (2.8) i (2.9).
Finally, (d) is equivalent to

R(A∗ABB∗) = R(BB∗A∗A), (2.10)

assuming that this submodule is closed.
(b) =⇒ (a): We prove the following:(

(2.4) ∧ (2.5) ∧ (2.6)
)

=⇒
(
(2.1) ∧ (2.2) ∧ (2.3)

)
.
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Suppose that (2.4), (2.5) and (2.6) hold. Obviously, (2.2) holds. Also,

B∗1 = DD−1B∗1 = (B∗1B1 +B∗2B2)D
−1B∗1 = B∗1B1D

−1B∗1 .

Thus, (2.1) holds. We see that B∗1B1D
−1B∗1B1 = B∗1B1 is satisfied, so R(B∗1B1)

is closed. We have the following matrix form of B∗1B1: B∗1B1 =

[
C1 0
0 0

]
:[

R(B∗1B1)
N (B∗1B1)

]
→

[
R(B∗1B1)
N (B∗1B1)

]
. Since R(B∗2B2) ⊂ N (B∗1B1) we have B∗2B2 =[

0 0
C3 C4

]
:

[
R(B∗1B1)
N (B∗1B1)

]
→

[
R(B∗1B1)
N (B∗1B1)

]
. However, B∗2B2 is Hermitian, so C3 = 0.

Thus, D =

[
C1 0
0 C4

]
and it obviously commutes with B∗1B1. Thus, (2.3) holds.

(a) =⇒ (b): We prove(
(1) ∧ (2) ∧ (3)

)
=⇒

(
(4) ∧ (5) ∧ (6)

)
.

Suppose that (1), (2) and (3) hold. Since D commutes with B∗1B1, we get that
D−1 commute with B∗1B1. Hence, we get

B1 = B1D
−1B∗1B1 = B1(D −B∗2B2)D

−1 = B1 −B∗2B2D
−1.

It follows that B1B
∗
2B2 = 0. Since R(B∗2) = R(B∗2B2) and R(B∗2B2) ⊂ N (B1), we

get R(B∗2) ⊂ N (B1), so B1B
∗
2 = 0. Thus, (4) is proved. Also, (5) is obvious. From

B1B
∗
2 = 0 we get B∗1B1B

∗
2 = 0 and B∗1B1D

−1B∗2 = 0. Hence, B2D
−1B∗1B1 = 0.

In the same manner as before, we conclude that B2D
−1B∗1 = 0, so (6) holds.

(a)∧(b) =⇒ (c): It is enough to observe the following elementary implications:

(5) ∧ (1) =⇒ (8), (4) ⇐⇒ (7), (6) =⇒ (9).

(c) =⇒ (b): We prove the implication:(
(7) ∧ (8) ∧ (9)

)
=⇒

(
(4) ∧ (5) ∧ (6)

)
.

Obviously, (7)⇐⇒ (4). From (9) we getR(B∗1A∗1) = R(B∗1A∗1A1B1) ⊂ N (B2D
−1),

implying that B2D
−1B∗1A

∗
1 = 0, so (6) follows. We multiply (8) by (A1B1)

†

and use the equality G∗GG† = G∗ whenever G is Moore-Penrose invertible.
Hence, we get B1D

−1B∗1A
∗
1 = A∗1A1B1(A1B1)

†, implying that B1D
−1B∗1A

∗
1A1 =

A∗1(A1B1(A1B1)
†)A1. We know that A1B1(A1B1)

† is selfadjoint, and therefore
A∗1(A1B1(A1B1)

†)A1 is selfadjoint. Now, B1D
−1B∗1A

∗
1A1 is selfadjoint.

Since both B1D
−1B∗1 and A∗1A1 are selfadjoint, we get

[B1D
−1B∗1 , A

∗
1A1] = 0,

so (5) follows.
(d) =⇒ (c): Let A∗ABB∗ be EP. Then we have

R(A∗AB) = R(A∗ABB∗) = R(BB∗A∗A) ⊂ R(B)

and
R(BB∗A∗) = R(BB∗A∗A) = R(A∗ABB∗) ⊂ R(A∗).

Hence, (c) holds.
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(c) =⇒ (d): Suppose that all conditions (7),(8),(9) hold. We find the equivalent
form of (10). Under these assumptions, we have that (10) is equivalent to

R
([
A∗1A1B1B

∗
1 A∗1A1B

∗
1B2

0 0

])
=

([
B1B

∗
1A
∗
1 0

B2B
∗
1A
∗
1A1 0

])
.

Since (7) holds, we see that (1) is equivalent to

R(A∗1A1B1B
∗
1) = R(B1B

∗
1A
∗
1A1).

The operator A1 is invertible, so the last equality is equivalent to

R(A∗1A1B1B
∗
1) = R(B1B

∗
1).

Using the closed-range assumptions, the last one is equivalent to

R(A∗1A1B1) = R(B1),

which is the same as
B1B

†
1A
∗
1A1B1 = A∗1A1B1. (2.11)

Now we start from (8) and obtain the following:

B1B
†
1A
∗
1A1B1 = B1B

†
1B1D

−1B∗1A
∗
1A1B1 = B1D

−1B∗1A
∗
1A1B1 = A∗1A1B1.

Thus, (8) implies (11). Hence, we have just proved that (c) implies (d). �

This theorem represents an extension of well-know results for matrices and
operators on Hilbert spaces (see [1], [2], [3], [7], [8]) to the more general settings:
we considered the Moore-Penrose inverse of a product of closed-range adjointable
operators on Hilbert C∗-modules. See also [5] and [11] for some algebraic aspects.
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