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SOME EXAMPLES OF CALABI-YAU MANIFOLDS
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Abstract. The space-time in String Theory is often described by means
of a mathematical object called manifold. Manifolds are very impor-
tant objects from the mathematical and the physics point of view, not
only in String Theory. Calabi-Yau manifolds are complex manifolds,
and they exist in any even dimension.
The simplest examples of Calabi-Yau manifolds have one complex di-
mension. Some simple examples of non compact Calabi-Yau two-folds,
which have two complex dimensions are C

2 = C × C, C × T 2.
K3 and T 4 are two examples of four-dimensional compact Kähler man-
ifolds for which they exist.
Examples of a Calabi-Yau n-folds can be constructed as a submanifold
of CP n+1 for all n > 1.

1. Introduction

Calabi-Yau manifolds are compact, complex Kähler manifolds that have
trivial first Chern classes (over R). In most cases, we assume that they
have finite fundamental groups. By the conjecture of Calabi (1957) proved
by Yau (1977; 1979), there exists on every Calabi-Yau manifold a Kähler
metric with vanishing Ricci curvature. Currently, research on Calabi-Yau
manifolds is a central focus in both mathematics and mathematical physics.
It is partially propelled by the prominent role the Calabi-Yau threefolds
play in superstring theories.

2. Definition of Calabi-Yau manifolds

2.1. The Ricci tensor of Calabi-Yau manifolds. Given any Kähler
metric, one defines its full curvature tensor by certain expressions of covari-
ant derivatives of the metric; the Ricci curvature is a partial contraction of
the full curvature tensor. This gives a tensor which is of the same type as
the Kähler form. In local coordinates,

Ric =
√
−1
∑

Rij̄dzi∧dz̄j
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2.2. The Calabi conjecture. According to a well-known theorem of Chern,
the Ricci form divided by 2π is a (1,1)-form that represents the first Chern
class of a compact complex manifold. Rooted in his attempt to find canon-
ical Khler metrics for a Kähler manifold, in 1954, E. Calabi (Calabi, 1957)
proposed his celebrated conjecture.

Conjecture: To every closed (1,1)-form 1
2πC1(X) representing the first

Chern class c1(X) of a Kähler manifold X, there is a unique Kähler metric
in the same Kähler class whose Ricci tensor (form) is the closed (1,1)-form
C1(X).

In case the complex manifold has vanishing first Chern class, the zero
form represents the first Chern class of the manifold. The Calabi conjecture
implies the existence of a unique Ricci-flat Kähler metric in every Kähler
class.

2.3. Yau’s theorem. In 1976, Yau (Yau, 1977; Yau, 1979) proved the
Calabi conjecture by solving the complex Monge-Ampère equation for a
real valued function φ

det

(

gij̄ +
∂2φ

∂zi∂z̄

j
)

= efdetgij̄

where ef is any smooth function of average 1 and gij̄∂i∂j̄φ is required to
be positive definite. The solution φ of the above equation ensures that the
new Kähler metric

ω +
√
−1∂∂̄φ

can attain any Ricci (curvature) form in the class referred to in the Calabi
conjecture.

2.4. Calabi-Yau manifolds and Calabi-Yau metrics. The first appli-
cation to Yau’s proof of Calabi conjecture is the existence of Ricci-flat
Kähler metric on every compact complex Kähler manifold with trivial
canonical class. (Trivial canonical class is equivalent to the existence of
a nowhere vanishing holomorphic volume form, which is equivalent to that
the top wedge power of the holomorphic cotangent bundle is the trivial
line bundle.) The converse is also true: any Ricci-flat simply connected
Kähler manifold has trivial canonical line class. This proves the existence
and provides a criterion for Kähler Calabi-Yau manifolds.

By convention, Calabi-Yau manifolds exclude those with infinite funda-
mental groups. The Ricci-flat metrics on Calabi-Yau manifolds are called
Calabi-Yau metrics.
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3. Examples of Calabi-Yau manifolds

3.1. Calabi-Yau one-folds. The simplest examples of Calabi-Yau mani-
folds have one complex dimension.

3.1.1. Complex plane. A simple noncompact example is the complex plane
C described in terms of the coordinates (z, z̄). It can be described in terms
of a flat metric

ds2 = |dz|2

and the holomorphic one-form is

Ω = dz

3.1.2. Two-torus T 2. The only compact CalabiYau one-fold is the two-
torus T 2, which can be described with a flat metric and can be thought of
as a parallelogram with opposite sides identified.The Ricci-flat metric on
a torus is actually a flat metric, so that the holonomy is the trivial group
SU(1). A one-dimensional Calabi-Yau manifold is a complex elliptic curve,
and in particular, algebraic.

3.2. Calabi-Yau two-folds.

3.2.1. Noncompact examples. Some simple examples of noncompact Calabi-
Yau two-folds, which have two complex dimensions, can be obtained as
products of the previous two manifolds: C

2 = C × C, C × T 2.

3.2.2. Compact examples: T 4, K3. K3 and T 4 are the only two examples
of four-dimensional compact Kähler manifolds for which they exist. As a
result, these manifolds are the only examples of CalabiYau two-folds.

3.2.3. Orbifold limit of K3. A singular limit of K3, which is often used in
string theory, is an orbifold of the T 4. This has the advantage that it can
be made completely explicit. Consider the square T 4 constructed by taking
C

2 and imposing the following four discrete identifications:

za ∼ za + 1 za ∼ za + i, a = 1, 2.

There is a 2 isometry group generated by

I : (z1, z2) → (−z1,−z2).

This Z2 action has 16 fixed points, for which each of the za takes one of
the following four values

0,
1

2
,

i

2
,

i + 1

2
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Therefore, the orbifold T 4/Z2 has 16 singularities. These singularities
can be repaired by a mathematical operation called blowing up the singu-
larities of the orbifold.

The singular points of the orbifold described above can be ”repaired” by
the insertion of an Eguchi−Hanson space. The way to do this is to excise
a small ball of radius a around each of the fixed points.

3.2.4. Hodge numbers of K3. Hodge numbers of the Eguchi-Hanson space
are h0,0 = h1,1 = h2,2 = 1 The Eguchi-Hanson spaces contribute a total
of 16 generators to H1;1, one for each of the 16 spaces used to blow up
the singularities. Moreover, on the T 4 the following four representatives of
H1;1 cohomology classes survive the Z2 identifications:

dz1 ∧ dz̄1, dz1 ∧ dz̄2, dz2 ∧ dz̄1, dz2 ∧ dz̄2

This gives in total h1;1 = 20. In addition, there is one H2;0 class rep-
resented by dz1 ∧ dz2 and one H2;0 class represented by dz̄1 ∧ dz̄2. As a
result, the Hodge numbers of K3 are given by the Hodge diamond

Thus, the nonzero Betti numbers of K3 are b0 = b4 = 1, b2 = 22, and
the Euler characteristic is χ = 24.

3.3. Calabi-Yau three-folds. In three complex dimensions, classification
of the possible Calabi-Yau manifolds is an open problem, although Yau
suspects that there is a finite number of families.

A Calabi-Yau 3-fold is a Kähler manifold (M,J,g) of complex dimension 3
with a covariant constant holomorphic volume form Ω such that it satisfies

ω3 − 3i

4
Ω ∧ Ω̄

where ω is the Kähler form of g. We say that (J, ω, Ω) constitutes a
Calabi-Yau structure on M and write a Calabi-Yau manifold as a quadruple
(M, J, ω, Ω).

Another equivalent way of defining a Calabi-Yau 3-fold is to require that
the Riemannian 6-fold (M, g) has holonomy group Hol(g) contained in
SU(3). One can then show that M admits a holomorphic volume form sat-
isfying the normalization formula. These are the most important CalabiYau
manifolds in string theory applications.

We have already shown that the Hodge numbers of Kähler manifolds
satisfy

hp,q = h3−p,3−q
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and a complex conjugation duality

hp,q = hq,p

For CalabiYau manifolds, there is a further duality, sometimes called
holomorphic duality.

The Hodge diamond takes the form:

3.4. Example of Calabi-Yau threefolds. We will now study in some
details two particular examples of CalabiYau threefolds: the quintic in CP

4,
and the Tian-Yau manifold. Both examples have been very important in
the history of string theory.

Through these two examples we will study in more generality complete
intersection manifolds in complex projective spaces and products thereof.
But to start with we need to know the Chern classes of the complex pro-
jective spaces CP

m.
Chern class of CP

m

The homogeneous coordinates zi of C
m+1 are sections of the hyperplane

line bundle L. Thus, the holomorphic tangent bundle of C
m+1 is spanned

by tangent vectors si(z) ∂
∂zi

, where the si are any sections ofL. Now, on

CP
m, the holomorphic tangent bundle. We have to take equivalence classes

with respect to overall rescaling, since overall rescaling is trivial in CP
m.

We find that

c(CP
m) = (1 + x)m+1

Calabi-Yau condition for complete intersection manifolds

We now want to see what the CalabiYau condition is for complete inter-
section manifolds. We look at Calabi-Yau hypersurfaces in complex pro-
jective spaces. Let X be a smooth hypersurface in CP

m defined as the
zero-locus of a degree d polynomial p. The Chern class of X is

c(X) =
(1 + x)m+1

1 + dx

The first Chern class is

c1(X) = [(m + 1) − d]x
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Therefore, we have found an explicit realization of the Calabi-Yau con-
dition for hypersurfaces; the condition c1 = 0 implies a condition on the
degree of the polynomial equation, d = m + 1. If we want a CalabiYau
threefold, we have m = 4, and therefore X must be given by the zero-locus
of a degree 5 polynomial, that is a quintic in CP

4. It is straightforward
to generalize the above computation to complete intersection manifolds Y
given by the zero-locus of a finite number of polynomials in CP

m.
The total Chern class (using the fact that c1 = 0), we find

C(Y ) = 1 +
1

2

[

(
l
∑

i=1

d2
i )− (n + 1)

]

x2 − 1

3

[

(
l
∑

i=1

d3
i ) − (n + 1)

]

x3

This result will be useful for the computation of the Euler characteristic
through the integration of the third Chern class over the manifold Y.

3.4.1. The quintic in CP
4. We will now concentrate on the quintic Q in

CP
4, which is given by a polynomial equation of degree 5 in the homoge-

neous coordinates of CP
4. According to the results of the previous section,

we have that

c(Q) = 1 + 10x2 − 40x3

To find its Euler characteristic, we must integrate

−40x3

over Q.
Using Poincarè duality and de Rhams theorems relating homology and

cohomology and we find that

χ(Q) =

∫

Q

c3(Q) =

∫

Q

(−40x3) =

∫

CP4

(−40x3) ∧ (50x) = −200

Now to pursue the study of the quintic further we must determine its
Hodge numbers.

For the quintic in CP
4, there are initially 126 parameters. The group of

holomorphic automorphisms of CP
m being

PGL(m + 1, C)

of them can be removed by an homogeneous linear change of variables.
Moreover, one parameter corresponds to overall rescaling.

Hence, there are h2,1(Q) = 126−(25−1)−1 = 101 parameters describing
the complex structure of Q. Since χ = 2(h1,1−h2,1) we have that h1,1(Q) =
1 i.e. there is only one Ricci-flat Kähler form on the quintic. Hence the
Kähler structure moduli space is one-dimensional.
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To summarize our result the quintic Q in CP
4 has Euler class χ = −200

and Hodge diamond

Now we know that Q is a Calabi-Yau manifold, and we studied it using
Chern classes. We will now construct a holomorphic volume form Ω on Q.
Alternatively, we could have started our study of the quintic by attempting
a direct construction of an holomorphic volume form, and show that way
that Q is indeed CalabiYau. By the residue theorem we find

Ω =
1

2π

(

∑4
µ=1 dz1 ∧ dz2 ∧ ... ∧ dzµ ∧ ....∧ dz4

∂Q/∂z0

)

which is a nowhere vanishing holomorphic (3, 0)-form on Q = 0. We
have found an holomorphic volume form Ω on Q; therefore as we saw in the
previous section all other holomorphic (3, 0)-forms are constant multiples
of Ω.

3.4.2. The Tian-Yau manifold. In order to study the Tian-Yau manifold,
we must generalize the results of the last section to manifolds defined by
the zero-locus of a finite number of homogeneous polynomial equations in
a product of projective spaces. Let us first introduce some notation.

The quintic in CP
4 is given by

CP
4 |5|200

while the Tian-Yau manifold is given by

In other words, the Tian-Yau manifold is given by three polynomial
equations in CP

3 ×CP
3 one of degree 1 in both CP

3, one of degree 3 in the
first CP

3, and one of degree 3 in the second CP
3. That is, if xµ and ym

are respectively homogeneous coordinates of the two CP
3, it represents the

system of equations

fµνρxµxνxρ = 0, gmnrymynyr = 0, hµnxµym = 0

where f,g,h are coefficients of the equations.
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Therefore, we should say that the Tian-Yau manifold is an element of
the configuration above, rather than the configuration itself. In fact, it is
given by the following equations with fixed coefficients:

3
∑

i=0

xiyi = 0

3
∑

i=0

(xi)
3 = 0

3
∑

i=0

(yi)
3 = 0

Now we want to compute the Euler characteristic and the Hodge numbers
of this configuration. It is straightforward to generalize the results of the
previous section.

Let X be a smooth complete intersection manifold defined by the config-
uration matrix

that is it is a complete intersection manifold in a product of l projective
spaces of dimensions ni, i = 1, 2, .., l, defined by the zero-locus of N poly-
nomials of degree vectors dj, j = 1, ..., N in the l projective spaces. Given
such a configuration, we can generalize the previous computation of the
Chern class to obtain

c(X) =

∏l
i=1(1 + xr)

nr+1

∏N
a=1(1 +

∑l
s=1 ds

axs)

By expanding, the first Chern class is

c1(X) =

l
∑

i=1

(nr + 1 −
N
∑

a=1

dr
a)xr

For c1(X) to be zero, all the coefficients in the sum must vanish, and we
find the condition

N
∑

a=1

dr
a = nr + 1, ∀r = 1, ..., l

For the Tian-Yau manifold, l=2, n1 = n2 = 3, N=3 and d1
1 = d2

1 =
1, d1

2 = 3, d2
2 = 0,d1

3 = 0 and d3
2 = 3.The condition is satisfied, and therefore

the Tian-Yau manifold is a Calabi-Yau manifold.
To find its Euler characteristic, we must expand the total Chern class to

find an expression for the third Chern class. If c1(X) = 0 we find that

c3(X) =

l
∑

r,s,t=1

(

1

3

[

δrst(nr + 1) −
N
∑

a=1

dr
ad

s
ad

t
a

])

xrxsxt
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The Euler characteristic of the Tian-Yau manifold is χ = −18.
Now let us try to find the Hodge numbers of the Tian-Yau manifold. We

will use the same method as for the quintic, namely simply counting the
free parameters in the polynomial equations.

Two equations are of degree 3 in 4 variables, so together they have 40
free parameters. However, in each CP

3 (16-1) of them can be removed
by a homogeneous linear change of variables, and 1 by overall rescaling.
Therefore in these two equations there are in total 8 free parameters. Now
the third equation has 16 coefficients, and 1 can be removed by oversall
rescaling. Therefore, in total there are 15 + 8 = 23 free parameters. Hence

Further, from the equation χ = 2(h1,1 +h2,1), we find that the Tian-Yau
manifold has Euler characteristic the Euler characteristic is and Hodge
diamond

3.4.3. P5. We will construct a Hodge diamond for three-fold Calabi-Yau
X3 ∈ P5, which is a complete intersection of a quadric and a quartics:

X = S2 ∩ S4

hi,1 = (0, 1, 89, 0) and hi,2 = (0, 89, 1, 0)
The Hodge diamond of complete intersectin of a quadric and a quartic

in P5 has the form

Chern class is

c(X) =
(1 + t)n+1

∏k
i=1(1 + sit)

The Euler characteristic is χ = −176

3.5. Calabi-Yau n-folds. Examples of a Calabi-Yau n-folds can be con-
structed as a submanifold of CPn+1 for all n > 1. Complex projective
space, CPn, sometimes just denoted Pn, is a compact manifold with n
complex dimensions. It can be constructed by taking Cn+1/0, that is the
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set of (z1, z2, ..., zn+1) where the zi are not all zero and making the identi-
fications

(z1, z2, ..., zn+1) ∼ (λz1, λz2, ..., λzn+1)

for any nonzero complex λ 6= 0. Thus, lines in Cn + 1 correspond to
points in CPn.

CPn is a Kähler manifold, but it is not a Calabi-Yau manifold. The sim-
plest example is CP 1, which is topologically the two-sphere S2. Obviously,
it does not admit a Ricci-flat metric. The standard metric of CPn, called
the Fubini − Study metric, is constructed as follows. First one covers the
manifold by n + 1 open sets given by za 6= 0. Then on each open set one
introduces local coordinates.

Examples of CalabiYau manifolds can be obtained as subspaces of com-
plex projective spaces. Specifically, let G be a homogenous polynomial of
degree k in the coordinates za of C

n+2, that is,

G(λz1, λz2, ..., λzn+2) = λkG(z1, ..., zn+2).

The submanifold of CPn+1 defined by

G(z1, ..., zn+2) = 0

is a compact Kähler manifold with n complex dimensions. This subman-
ifold has vanishing first Chern class for k = n + 2. One way of obtaining
this result is to explicitly compute c1(X). To do so note that c1(X) can
be expressed through the volume form since X is Kähler. As a volume
form on X one can use the pullback of the (n-1)-power of the Kähler form
of CPn+1 . Another way of obtaining this result is to use the adjunction
formula of algebraic geometry, which implies

c1(X) ∼ [k − (n + 2)]c1(CPn+1).

This vanishes for k=n+2.
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