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EQUATIONS OF MOTION OF CLASSICAL

NON-RELATIVISTIC STRINGS AND RELATIVISTIC

STRINGS

NDRIÇIM SADIKAJ AND ANILA DUKA

Abstract. To formulate the dynamics of a system we can write either
the equations of motion or, alternatively, an action. We construct an
analytic model describing the macroscopic properties of non-relativistic
string and relativistic string. We study the equations of motion for non-
relativistic strings and develop the Lagrangian approach to their dy-
namics. More importantly, the equations of motion for the relativistic
string, the action is a natural generalization of the relativistic particle
action. We use the proper area of this surface as the action; this is the
Nambu-Goto action. We study the reparameterization property of this
action, identify the string tension, and find the equations of motion.

1. Introduction

In classical physics, the evolution of a theory is described by its field
equations. Suppose we have a non-relativistic point particle, then the field

equations for X(t), i.e. Newtons law mẌ(t) = −∂V (X(t))
∂X(t) , follow from

extremizing the action, which is given by

S =

∫

Ldt

where L = T − V .

2. Equations of motion for transverse oscillations

The direction along the string is called the longitudinal direction, and
the directions orthogonal to the string are called the transverse directions.
Working in the (x, y) plane, let the classical non relativistic string have
its endpoints fixed at (0, 0), and (a, 0). In a transverse oscillation, the
x-coordinate of any point on the string does not change in time. The
transverse displacement of a point is given by its y-coordinate.
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To describe the classical mechanics of a homogeneous string, we need
two pieces of information: the tension T0 and the mass per unit length µ0.
The total mass of the string is then M = µ0 · a.

Consider a small portion of the static string that extends from x to x +
dx, with y = 0. This piece is shown in transverse oscillation in figure.

The net vertical force Fv is:

dFv = T0
∂y

∂x
|x+dx − T0

∂y

∂x
|x ∼= T0

∂2y

∂x2
dx

By Newton’s law, the net vertical force equals mass times vertical accel-
eration. So,

T0
∂2y

∂x2
dx = µ0dx

∂2y

∂x2

We cancel dx on each side and rearrange terms to get

∂2y

∂x2
− µ0

T0

∂2y

∂t2
= 0

This is just a wave equation.
The general solution of equation is of the form

y (t, x) = h+ (x − v0t) + h− (x + v0t) (1)

where h+ and h− are arbitrary functions of a single variable. This solu-
tion represents a superposition of two waves, h+ moving to the right and
h− moving to the left.

3. Boundary conditions and initial conditions

Since equation is a partial differential equation involving space and time
derivatives, in order to fix solutions we must in general apply both bound-
ary conditions and initial conditions. Boundary conditions constrain the
solution at the boundary of the system, and initial conditions constrain the
solution at a given starting time. The most common types of boundary
conditions are Dirichlet and Neumann boundary conditions.
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For our string, Dirichlet boundary conditions specify the positions of the
string endpoints.

If we attach a massless loop to each end of the string and the loops
are allowed to slide along two frictionless poles, we are imposing Neumann
boundary conditions.

4. Lagrangian mechanics

The Lagrangian L of a system is defined by

L = T − V

where T is the kinetic energy of the system and V is the potential energy
of the system. For a point particle of mass m moving along the x axis
under the influence of a time-independent potential V(x), the nonrelativistic
Lagrangian takes the form

L (t) =
1

2
m (ẋ (t))2 − V (x (t)) , ẋ (t) =

dx (t)

dt
The action S is defined as

S =

∫

℘

L (t) dt

where ℘ is a path x(t) between an initial position xi at an initial time
ti, and a final position xf at a final time tf . The action is a functional.

For any path x(t), the action is given by

S [x] =

∫ tf

ti

{

1

2
m (ẋ (t))2 − V (x (t))

}

dt

In terms of the function x(t) which specifies the path, the perturbed path
takes the form x(t) + δx(t), as shown in figure 4.
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For any time t, the variation δx(t) is the vertical distance between the
original path and the varied path. As in the figure, we consider variations
where the initial and final positions

δx (ti) = δx (tf ) = 0

The action for the perturbed path :

S [x + δx] =

∫ tf

t1

{

m

2

(

d

dt
(x(t) + δx(t))

)2

− V (x(t) + δx(t))

}

dt

5. Relativistic strings

We now begin our study of the classical relativistic string-a string that is,
in many ways, much more elegant than the non-relativistic one considered
before. We focus our attention on the surface traced out by the string in
space-time. We use the proper area of this surface as the action; this is
the Nambu-Goto action. We study the reparameterization property of this
action, identify the string tension, and find the equations of motion.

6. The Nambu-Goto string action

Let us now move to our case of interest, the case of surfaces in spacetime.
They are two-dimensional and require two parameters.
The proper area is given as

A =

∫

dξ1 · dξ2

√

(
∂~x

∂ξ1
· ∂~x

∂ξ1
)(

∂~x

∂ξ2
· ∂~x

∂ξ2
) −

(

∂~x

∂ξ1
· ∂~x

∂ξ2

)2
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Now that we are sure that the proper area functional is correctly defined,
we can introduce the action for the relativistic string. This action is pro-
portional to the proper area of the world-sheet. To have the units of action
we must multiply the area functional by some suitable constants.

The area functional has units of length-squared, as it must be. This is
because Xµ has units of length, and each term under the square root has
four X. The units of τ and σ cancel out. Each term in the square root
has two τ derivatives and two σ derivatives. Their units cancel against
the units of the differentials. Nevertheless, we will take σ to have units of
length and τ to have units of time.

We do this anticipating a relation between τ and time and between σ
and positions on strings. To summarize:

[τ = T ] , [σ = L] , [Xµ = L] ,
[

A = L2
]

Since S must have units of ML2/T and A has units of L2, we must
multiply the proper area by a quantity with units of M/T . The string
tension T0 has units of force, and force divided by velocity has the desired
units of M/T . We can therefore multiply the proper area by T0/c to get a
quantity with the units of action. Making use of we set the string action
equal to

S = −T0

c

∫ τf

τ1
dτ

∫ σ1

0
dσ

√

(ẊX ′)2 − (Ẋ)2(X ′)2

Here σ > 0 is some constant, and we have introduced some notation for
derivatives:

Ẋµ ≡ ∂Xµ

∂τ
dhe (Xµ)′ ≡ ∂Xµ

∂σ

The action S is the Nambu-Goto action for the relativistic string. It is
crucial that this action be reparameterization invariant. We can proceed
just as we did with spatial surfaces to write the Nambu-Goto action in a
manifestly reparameterization invariant way. In this case we have

−ds2 = dXµdX|mu = ηµνdXµdXν = ηµν
∂Xµ

∂ξα

∂Xν

∂ξβ
dξαdξβ

Here ηµν is the target-space Minkowski metric. The indices α and β run
over two values, 1 and 2, and we have taken ξ1 = τ dhe ξ2 = σ. Just as we
did for spatial surfaces, we define an induced metric γαβ on the world-sheet:

γαβ ≡ ηµν
∂Xµ

∂ξα

∂Xν

∂ξβ
=

∂X

∂ξα

∂X

∂ξβ

More explicitly, the 2-by-2 matrix γαβ is

γαβ =

[

(Ẋ)2 Ẋ · X ′

Ẋ · X ′ (X ′)2

]
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With the help of this metric we can write the Nambu Goto action in the
manifestly reparameterization invariant form

S = −T0

c

∫

dτdσ
√−γ, γ = det(γαβ)

In this form, one can readily generalize the NambuGoto action to de-
scribe the dynamics of objects that have more dimensions than strings. An
action of this kind is useful as a first approximation to the dynamics of
D-branes.

7. Equations of motion

In this section we will obtain the equations of motion that follow by
variation of the string action. In doing so we will also have an opportunity
to discuss the various boundary conditions that can be imposed on the ends
of open strings. Dirichlet boundary conditions will be interpreted to arise
owing to the existence of D-branes.

Let us begin by writing the Nambu-Goto action as the double integral
of a Lagrangian density L:

S =

∫ tf

t1

dτL =

∫ tf

t1

dτ

∫ σ1

0

dσL(Ẋµ, X ′µ)

where L is given by

L(Ẋµ, X ′µ) = −T0

c

√

(ẊX ′)2 − (Ẋ)2(X ′)2

We can obtain the equations of motion for the relativistic string by set-
ting the variation of the action equal to zero. The variation is simply

δS =

∫ tf

t1

dτ

∫ σ1

0
dσ

[

∂L

∂Ẋµ

∂(δXµ)

∂τ
+

∂L

∂X ′µ

∂(δXµ)

∂σ

]

where we have used

δẊµ = δ(
∂Xµ

∂τ
) =

∂(δXµ)

∂τ

and an analogous equation for δX ′µ

The quantities ∂L

∂Ẋµ
and ∂L

∂X ′µ will appear frequently throughout the re-

mainder of our discussion, so it is useful to introduce new symbols for them.
This time we find

P τ
µ =

∂L

∂Ẋµ
= −T0

c

(Ẋ · X ′)X ′
µ − (X ′2)Ẋµ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
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Pσ
µ =

∂L

∂X ′µ
= −T0

c
= −T0

c

(Ẋ · X ′)Ẋµ − (Ẋ2)X ′
µ

√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2

Using this notation σS, the variation becomes

δS =

∫ tf

t1

dτ

∫ σ1

0
dσ

[

∂

∂τ
(δXµP τ

µ ) +
∂

∂σ
(δXµPσ

µ ) − δXµ(
∂P τ

µ

∂τ
+

∂Pσ
µ

∂σ
)

]

Since the flow of τ implies the flow of time, we can imagine specifying the
initial and final states of the string, and we restrict ourselves to variations
for which δXµ(τf , σ) = δXµ(τi, σ) = 0.

We will always assume such variations, so we can forget about these
terms. The variation then becomes

δS =

∫ tf

t1

dτ
[

δXµPσ
µ

]σ1

0
−

∫ tf

t1

dτ

∫ σ1

0
dσδXµ(

∂P τ
µ

∂τ
+

∂Pσ
µ

∂σ
)

Since the second term on the right-hand side must vanish for all varia-
tions δXµ of the motion, we set

∂P τ
µ

∂τ
+

∂Pσ
µ

∂σ
= 0

This is the equation of motion for the relativistic string, open or closed.
There are two natural boundary conditions that one can impose at an

endpoint. The first is a Dirichlet boundary condition, in which the endpoint
of the string remains fixed throughout the motion:

∂Xµ

∂τ
(τ, σ∗) = 0, µ 6= 0

Since time varies as τ varies, the value µ = 0 must be excluded. Dirichlet
boundary conditions are only possible for space directions.

The second possible boundary condition is a free endpoint condition:

Pσ
µ (τ, σ∗) = 0

The boundary conditions can be imposed in many possible ways. For each
spatial direction, and at each endpoint, we can choose either a Dirichlet or
a free endpoint boundary condition. Since closed strings have no endpoints,
they do not require boundary conditions.
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