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GENERALIZATIONS OF STEFFENSEN’S INEQUALITY
VIA n WEIGHT FUNCTIONS

A. AGLIĆ ALJINOVIĆ, J. PEČARIĆ, AND A. PERUŠIĆ PRIBANIĆ

Abstract. New generalizations of Steffensen’s inequality are obtained by
means of weighted Montgomery identity with n different weight functions.
Instead for a nondecreasing (1-convex) function our generalization hold for a
n-convex function. Further, functionals associated to these new generaliza-
tions are observed and used to generate n−exponentially and exponentially
convex functions as well as to obtain new Stolarsky type means related to
these functionals.

1. Introduction

The well-known Steffensen’s inequality states (see [15])

Theorem 1. Let f, g : [a, b] → R be integrable mappings on [a, b] such that f is
nonincreasing and 0 ≤ g (t) ≤ 1 for t ∈ [a, b]. Then∫ b

b−λ
f (t) dt ≤

∫ b

a

f (t) g (t) dt ≤
∫ a+λ

a

f (t) dt (1.1)

where λ =
∫ b
a
g (t) dt.

J. F. Steffensen proved this inequality in 1918 and since then it was generalized
in numerous ways. Extensive overview of these generalizations can be found in
[10] or [14].

In the recent paper [3] the next weighted Euler identity is obtained:

Theorem 2. Let f : [a, b]→ R be n-times differentiable on [a, b] , n ∈ N with f (n)
: [a, b] → R integrable on [a, b]. Let wi : [a, b] → [0,∞〉, i = 1, .., n be a sequence
of n integrable functions satisfying

∫ b
a
wi (t) dt = 1 and Wi (t) =

∫ t
a
wi (x) dx for
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t ∈ [a, b], Wi (t) = 0 for t < a and Wi (t) = 1 for t > b, for all i = 1, .., n. For any
x ∈ [a, b] define weighted Peano kernel:

Pwi (x, t) =

 Wi (t) , a ≤ t ≤ x,

Wi (t)− 1 x < t ≤ b.
Then it holds

f (x)−
∫ b

a

w1 (t) f (t) dt−
n−2∑
k=0

(∫ b

a

wk+2 (t) f (k+1) (t) dt

)

·

(∫ b

a

· · ·
∫ b

a

Pw1
(x, t1)

k∏
i=1

Pwi+1
(ti, ti+1) dt1 · · · dtk+1

)

=

∫ b

a

· · ·
∫ b

a

Pw1
(x, t1)

n−1∏
i=1

Pwi+1
(ti, ti+1) f (n) (tn) dt1 · · · dtn. (1.2)

If we take wi ≡ w, i = 1, .., n identity (1.2) reduces to identity obtained in
[1], and for n = 1, it reduces to the weighted Montgomery identity given by
Pečarić in [11]

f (x)−
∫ b

a

w1 (t) f (t) dt =

∫ b

a

Pw1
(x, t1) f

′
(t1) dt1.

The aim of this paper is to generalize Steffensen’s inequality by using the
weighted Euler identity (1.2). In a such way new generalizations Steffensen’s
inequality for a n-convex function are obtained in Section 2 and Section 3. In
case n = 1 Steffensen’s inequality (1.1) is recaptured since 1-convex functions are
monotonic (nondecreasing) functions. In such way we generalize for any n ∈ N
results obtained in [6] for n = 1. In Section 4 estimates of the difference of the
left-hand and right-hand sides of the obtained inequalities are given. In Section 5,
three functionals associated to these new generalizations are considered and used
to generate n−exponentially and exponentially convex functions. In Section 6,
new Stolarsky type means related to these functionals are obtained.

2. The difference between two weighted integral means

Next, we subtract two generalized weighted Montgomery identities (1.2) to ob-
tain identity for the difference between two weighted integral means, each having
its own weight, on two different intersecting intervals [a, b] and [c, d]. This identity
is given in the next theorem for both possible cases, when one interval is a subset
of the other [c, d] ⊆ [a, b] and for overlapping intervals [a, b] ∩ [c, d] = [c, b]. The
other two possible cases, when [a, b] ∩ [c, d] 6= ∅ we simply get by replacement
a↔ c, b↔ d. For that purpose we denote

T [a,b]
w1,..,wn (x) =

n−2∑
k=0

(
1∫ b

a
wk+2 (t) dt

∫ b

a

wk+2 (t) f (k+1) (t) dt

)
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·

(∫ b

a

· · ·
∫ b

a

Pw1 (x, t1)

k∏
i=1

Pwi+1 (ti, ti+1) dt1 · · · dtk+1

)
.

Theorem 3. Let f : [a, b]∪[c, d]→ R be n-times differentiable on [a, b]∪[c, d] , n ∈
N with f (n) : [a, b] ∪ [c, d]→ R integrable on [a, b] ∪ [c, d]. Let wi : [a, b]→ [0,∞〉,
i = 1, .., n be a sequence of n integrable functions, Wi (t) =

∫ t
a
wi (x) dx for t ∈

[a, b], Wi (t) = 0 for t < a and Wi (t) =
∫ b
a
wi (x) dx for t > b, for all i = 1, .., n.

Also, let ui : [c, d] → [0,∞〉, i = 1, .., n be a sequence of n integrable functions
Ui (t) =

∫ t
c
ui (x) dx for t ∈ [c, d], Ui (t) = 0 for t < c and Ui (t) =

∫ d
c
ui (x) dx for

t > d, for all i = 1, .., n. For any x ∈ [a, b] ∪ [c, d] define weighted Peano kernel:

Pwi(x, t)=


1

Wi(b)
Wi (t) , a ≤ t ≤ x,

1
Wi(b)

Wi (t)− 1, x < t ≤ b,
0, t /∈ [a, b] ,

Pui(x, t) =


1

Ui(d)
Ui (t) , c ≤ t ≤ x,

1
Ui(d)

Ui (t)− 1, x < t ≤ d,
0, t /∈ [c, d] .

Then if Wi (b) 6= 0 and Ui (d) 6= 0 for i = 1, .., n, for any x ∈ [a, b] ∩ [c, d] it
holds

1∫ d
c
u1(t)dt

∫ d
c
u1 (t) f (t) dt− 1∫ b

a
w1(t)dt

∫ b
a
w1 (t) f (t) dt−−T [a,b]

w1,..,wn(x) + T
[c,d]
u1,..,un(x) =

=
∫max{b,d}
min{a,c} K (x, t1, . . . , tn) f (n) (tn) dtn

(2.1)
where

K (x, t1, . . . , tn) =

∫ max{b,d}

min{a,c}
· · ·
∫ max{b,d}

min{a,c}

[
Pw1

(x, t1)

n−1∏
i=1

Pwi+1
(ti, ti+1) (2.2)

−Pu1
(x, t1)

n−1∏
i=1

Pui+1
(ti, ti+1)

]
dt1 · · · dtn−1

Proof. We apply (1.2) with x ∈ [a, b] ∩ [c, d] and n normalized weight functions
wi (t) /Wi (b), t ∈ [a, b], i = 1, .., n and then once again with n normalized weight
functions ui (t) /Ui (d), t ∈ [c, d], i = 1, .., n. By subtracting these two identities
we obtain

1∫ d
c
u1 (t) dt

∫ d

c

u1 (t) f (t) dt− 1∫ b
a
w1 (t) dt

∫ b

a

w1 (t) f (t) dt− T [a,b]
w1,..,wn(x) + T [c,d]

u1,..,un(x)

=

∫ b

a

· · ·
∫ b

a

Pw1
(x, t1)

n−1∏
i=1

Pwi+1
(ti, ti+1) f (n) (tn) dt1 · · · dtn

−
∫ d

c

· · ·
∫ d

c

Pu1
(x, t1)

n−1∏
i=1

Pui+1
(ti, ti+1) f (n) (tn) dt1 · · · dtn
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=

∫ max{b,d}

min{a,c}
K (x, t1, . . . , tn) f (n) (tn) dtn

and (2.1) is proved. �

Consider the sequence (Bk (t) , k ≥ 0) of Bernoulli polynomials which is uniquely
determined by the following identities:

B′k (t) = kBk−1 (t) , k ≥ 1, B0 (t) = 1

and
Bk (t+ 1)−Bk (t) = ktk−1, k ≥ 0.

The values Bk = Bk (0), k ≥ 0 are known as Bernoulli numbers. For our purposes,
the first five Bernoulli polynomials are

B0 (t) = 1, B1 (t) = t− 1

2
, B2 (t) = t2 − t+

1

6
,

B3 (t) = t3 − 3

2
t2 +

1

2
t, B4 (t) = t4 − 2t3 + t2 − 1

30
.

Let (B∗k (t) , k ≥ 0) be a sequence of periodic functions of period 1, related to
Bernoulli polynomials as

B∗k (t) = Bk (t) , 0 ≤ t < 1, B∗k (t+ 1) = B∗k (t) , t ∈ R.

From the properties of Bernoulli polynomials it easily follows that B∗0 (t) = 1, B∗1
is discontinuous function with a jump of −1 at each integer, while B∗k , k ≥ 2, are
continuous functions.

Corollary 3.1. Let f : [a, b] ∪ [c, d] → R be n-times differentiable on [a, b] ∪
[c, d] , n ∈ N with f (n) : [a, b]∪ [c, d]→ R integrable on [a, b]∪ [c, d]. Let w : [a, b]→
[0,∞〉 and u : [c, d]→ [0,∞〉 be integrable weight functions, W (t) =

∫ t
a
w (x) dx for

t ∈ [a, b], W (t) = 0 for t < a and W (t) =
∫ b
a
w (x) dx for t > b, U (t) =

∫ t
c
u (x) dx

for t ∈ [c, d], U (t) = 0 for t < c and U (t) =
∫ d
c
u (x) dx for t > d. Then if

W (b) 6= 0 and U (d) 6= 0, for any x ∈ [a, b] ∩ [c, d] it holds

1∫ d
c
u (t) dt

∫ d

c

u (t) f (t) dt− 1∫ b
a
w (t) dt

∫ b

a

w (t) f (t) dt− T [a,b]
w (x) + T [c,d]

u (x)

=
(b− a)

n−2

(n− 1) !

∫ b

a

(∫ b

a

Pw (x, s)

[
Bn−1

(
s− a
b− a

)
−B∗n−1

(
s− t
b− a

)]
ds

)
f (n) (t) dt

− (d− c)n−2

(n− 1) !

∫ d

c

(∫ d

c

Pu (x, s)

[
Bn−1

(
s− c
d− c

)
−B∗n−1

(
s− t
d− c

)]
ds

)
f (n) (t) dt

(2.3)

where

T [a,b]
w (x) =

n−2∑
k=0

(b− a)
k−1

k!

(∫ b

a

Pw (x, t)Bk

(
t− a
b− a

)
dt

)(
f (k) (b)− f (k) (a)

)
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T [c,d]
u (x) =

n−2∑
k=0

(d− c)k−1

k!

(∫ d

c

Pw (x, t)Bk

(
t− c
d− c

)
dt

)(
f (k) (d)− f (k) (c)

)
Proof. We apply identity (2.1) with w1 ≡ w, wi ≡ 1

b−a , i = 2, .., n and u1 ≡ u,
ui ≡ 1

d−c , i = 2, .., n. Then Pwi (x, t) and Pui (x, t) for i = 2, .., n reduce to

Pa,b (x, t) =


t−a
b−a , a ≤ t ≤ x,
t−b
b−a , x < t ≤ b,
0, t /∈ [a, b] .

and Pc,d (x, t) =


t−c
d−c , c ≤ t ≤ x,
t−d
d−c , x < t ≤ d,
0, t /∈ [c, d] .

Since the the next two identities hold (see [4])∫ b

a

· · ·
∫ b

a

Pa,b(x, s1)

(
k−1∏
i=1

Pa,b(si, si+1)

)
ds1 · · · dsk =

(b− a)
k

k!
Bk

(
x− a
b− a

)
and ∫ b

a

· · ·
∫ b

a

Pa,b (x, s1)

(
n−2∏
i=1

Pa,b (si, si+1)

)
ds1 · · · dsn−2

=
(b− a)

n−2

(n− 1) !

[
Bn−1

(
x− a
b− a

)
−B∗n−1

(
x− sn
b− a

)]
it follows that

1

b− a

∫ b

a

· · ·
∫ b

a

Pw (x, t1)

k∏
i=1

Pa,b (ti, ti+1) dt1 · · · dtk+1

=
(b− a)

k−1

k!

(∫ b

a

Pw (x, t)Bk

(
t− a
b− a

)
dt

)
and∫ b

a

· · ·
∫ b

a

Pw (x, t1)

n−1∏
i=1

Pa,b (ti, ti+1) f (n) (tn) dt1 · · · dtn

=
(b− a)

n−2

(n− 1) !

∫ b

a

(∫ b

a

Pw (x, s)

[
Bn−1

(
s− a
b− a

)
−B∗n−1

(
s− t
b− a

)]
ds

)
f (n) (t) dt.

Consequently T [a,b]
w1,..,wn (x) reduces to

T
[a,b]
w (x)

= 1
b−a

∑n−2
k=0

(∫ b
a
· · ·
∫ b
a
Pw (x, t1)

k∏
i=1

Pa,b (ti, ti+1) dt1 · · · dtk+1

)(
f (k) (b)− f (k) (a)

)
=
∑n−2
k=0

(b−a)k−1

k!

(∫ b
a
Pw (x, t)Bk

(
t−a
b−a

)
dt
) (
f (k) (b)− f (k) (a)

)
and similarly T [c,d]

u1,..,un (x) to T [c,d]
u (x). Finally∫ max{b,d}

min{a,c}
K (x, t1, . . . , tn) f (n) (tn) dtn



36 A. AGLIĆ ALJINOVIĆ, J. PEČARIĆ, AND A. PERUŠIĆ PRIBANIĆ

=
(b− a)

n−2

(n− 1) !

∫ b

a

(∫ b

a

Pw (x, s)

[
Bn−1

(
s− a
b− a

)
−B∗n−1

(
s− t
b− a

)]
ds

)
f (n) (t) dt

− (d− c)n−2

(n− 1) !

∫ d

c

(∫ d

c

Pu (x, s)

[
Bn−1

(
s− c
d− c

)
−B∗n−1

(
s− t
d− c

)]
ds

)
f (n) (t) dt

and identity (2.1) reduces to identity (2.3). �

Corollary 3.2. Let f : [a, b] ∪ [c, d] → R be n-times differentiable on [a, b] ∪
[c, d] , n ∈ N with f (n) : [a, b]∪ [c, d]→ R integrable on [a, b]∪ [c, d]. Let w : [a, b]→
[0,∞〉 and u : [c, d]→ [0,∞〉 be integrable weight functions, W (t) =

∫ t
a
w (x) dx for

t ∈ [a, b], W (t) = 0 for t < a and W (t) =
∫ b
a
w (x) dx for t > b, U (t) =

∫ t
c
u (x) dx

for t ∈ [c, d], U (t) = 0 for t < c and U (t) =
∫ d
c
u (x) dx for t > d. Then if

W (b) 6= 0 and U (d) 6= 0, for any x ∈ [a, b] ∩ [c, d] it holds

1∫ d
c
u (t) dt

∫ d

c

u (t) f (t) dt− 1∫ b
a
w (t) dt

∫ b

a

w (t) f (t) dt− T [a,b]
w,n (x) + T [c,d]

u,n (x)

=

∫ max{b,d}

min{a,c}
K̂ (x, t1, . . . , tn) f (n) (tn) dtn (2.4)

where

T [a,b]
w,n (x) =

n−2∑
k=0

(
1∫ b

a
w (t) dt

∫ b

a

w (t) f (k+1) (t) dt

)

·

(∫ b

a

· · ·
∫ b

a

Pw (x, t1)

k∏
i=1

Pw (ti, ti+1) dt1 · · · dtk+1

)
,

T [c,d]
u,n (x) =

n−2∑
k=0

(
1∫ d

c
u (t) dt

∫ d

c

u (t) f (k+1) (t) dt

)

·

(∫ d

c

· · ·
∫ d

c

Pu (x, t1)

k∏
i=1

Pu (ti, ti+1) dt1 · · · dtk+1

)
,

and

K̂ (x, t1, . . . , tn) =

∫ max{b,d}

min{a,c}
· · ·
∫ max{b,d}

min{a,c}

[
Pw (x, t1)

n−1∏
i=1

Pw (ti, ti+1)

= −Pu (x, t1)

n−1∏
i=1

Pu (ti, ti+1)

]
dt1 · · · dtn−1

Proof. We apply identity (2.1) with wi ≡ w, i = 1, .., n. Then T
[a,b]
w1,..,wn (x),

T
[c,d]
u1,..,un (x) and K (x, t1, . . . , tn) reduce to T [a,b]

w,n (x), T [c,d]
u,n (x) and K̂ (x, t1, . . . , tn)

respectively. �
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Remark 2.1: Identity (2.3) was previously obtained in [2]. In a special case for
uniform normalized weight function w, for the case [c, d] ⊆ [a, b] it was obtained
in [12] and for the case [a, b] ∩ [c, d] = [c, b] in [5]. Identity (2.4), in a special case
for uniform normalized weight function w, for c = d as a limit case and n = 2 was
obtained in [1], while for n = 3 it was obtained in [4].

Theorem 4. Let f : [a, b] ∪ [c, d] → R be n-convex function on [a, b] ∪ [c, d] , n ∈
N. Let wi : [a, b] → [0,∞〉, i = 1, .., n be a sequence of n integrable functions,
Wi (t) =

∫ t
a
wi (x) dx for t ∈ [a, b], Wi (t) = 0 for t < a and Wi (t) =

∫ b
a
wi (x) dx

for t > b,for all i = 1, .., n. Also, let ui : [c, d] → [0,∞〉, i = 1, .., n be a sequence
of n integrable functions, Ui (t) =

∫ t
c
ui (x) dx for t ∈ [c, d], Ui (t) = 0 for t < c

and Ui (t) =
∫ d
c
ui (x) dx for t > d, for all i = 1, .., n. If

K ≥ 0 (2.5)

where K is the function defined by (2.2), then for any x ∈ [a, b] ∩ [c, d] it holds

1∫ b
a
w1 (t) dt

∫ b

a

w1 (t) f (t) dt+T [a,b]
w1,..,wn(x) ≤ 1∫ d

c
u1 (t) dt

∫ d

c

u1 (t) f (t) dt+T [c,d]
u1,..,un(x) .

(2.6)

Proof. Since f is a n-convex function, without loss of generality we can assume (see
[14, p. 293]) that f (n) exists and is continuous. By using the (2.1) and f (n) ≥ 0
the proof follows. �

Remark 2.2: Inequality (2.6) holds also if f is n-concave and K ≤ 0. If f is
n-concave and K ≥ 0 or f is n-convex and K ≤ 0 the inequality (2.6) is reversed.

3. Generalizations of Steffensen’s inequality

Corollary 4.1. Let f : [a, b] ∪ [a, a+ λ] → R be n-convex function on [a, b] ∪
[a, a+ λ] , n ∈ N. Let wi : [a, b] → [0,∞〉, i = 1, .., n and ui : [a, a+ λ] → [0,∞〉,
i = 1, .., n be two sequences of weight functions as in Theorem 3. If

K ≥ 0 (3.1)

where K is the function defined by (2.2), then for any x ∈ [a, b]∩ [a, a+ λ] it holds:
1∫ b

a
w1(t)dt

∫ b
a
w1 (t) f (t) dt+ T

[a,b]
w1,..,wn(x) ≤

≤ 1∫ a+λ
a

u1(t)dt

∫ a+λ
a
u1 (t) f (t) dt+ T

[a,a+λ]
u1,..,un(x) .

(3.2)

In case f is n-concave function inequality (3.2) holds if K ≤ 0.

Proof. We apply Theorem 4 with [c, d] = [a, a+ λ]. �

Remark 3.1: For every differentiable, nonincreasing function f : [a, b]∪[a, a+ λ]→
R and w : [a, b] → [0,∞〉 and u : [a, a+ λ] → [0,∞〉 some weight functions such
that

∫ b
a
w (t) dt =

∫ a+λ
a

u (t) dt inequality (3.2) for n = 1 reduces to∫ b

a

w (t) f (t) dt ≤
∫ a+λ

a

u (t) f (t) dt
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while condition K ≤ 0 reduces to∫ x

a

u (t) dt ≥
∫ x

a

w (t) dt for x ∈ [a, a+ λ] and
∫ b

x

w (t) dt ≥ 0 for x ∈ 〈a+ λ, b] ,

(3.3)
in case 0 < λ ≤ b− a and to∫ x

a

u (t) dt ≥
∫ x

a

w (t) dt for x ∈ [a, b] and
∫ a+λ

x

u (t) dt ≤ 0 for x ∈ 〈b, a+ λ] ,

in case λ > b− a.
Further for u ≡ 1 we have

∫ b
a
w (t) dt =

∫ a+λ
a

u (t) dt = λ. Thus if 0 ≤ w (t) ≤ 1
for t ∈ [a, b] then λ ≤ b− a and it’s easy to see that (3.3) is fulfilled. In a such a
way the right-hand side of the Steffensen’s inequality (1.1) is recaptured.

Corollary 4.2. Let f : [a, b] ∪ [b− λ, b] → R be n-convex function on [a, b] ∪
[b− λ, b] , n ∈ N. Let wi : [a, b] → [0,∞〉, i = 1, .., n and ui : [b− λ, b] → [0,∞〉,
i = 1, .., n be two sequences of weight functions as in Theorem 3. If

K ≤ 0 (3.4)

where K is the function defined by (2.2), then for any x ∈ [a, b]∩ [b− λ, b] it holds:
1∫ b

a
w1(t)dt

∫ b
a
w1 (t) f (t) dt+ T

[a,b]
w1,..,wn(x) ≥

≥ 1∫ b
b−λ u1(t)dt

∫ b
b−λu1 (t) f (t) dt+ T

[b−λ,b]
u1,..,un(x)

(3.5)

In case f is n-concave function inequality (3.5) holds if K ≥ 0.

Proof. We apply Theorem 4 with [c, d] = [b− λ, b]. �

Remark 3.2: For every differentiable, nonincreasing function f : [a, b]∪[b− λ, b]→
R and w : [a, b] → [0,∞〉 and u : [b− λ, b] → [0,∞〉 some weight functions such
that

∫ b
a
w (t) dt =

∫ b
b−λ u (t) dt inequality (3.5) for n = 1 reduces to∫ b

a

w (t) f (t) dt ≥
∫ b

b−λ
u (t) f (t) dt

while condition K ≥ 0 reduces to∫ x

a

w (t) dt ≥ 0 for x ∈ [a, b− λ] and
∫ x

b−λ
u (t) dt ≤

∫ x

a

w (t) dt for x ∈ 〈b− λ, b]

(3.6)
in case 0 < λ ≤ b− a and to∫ x

b−λ
u (t) dt ≤ 0 for x ∈ [b− λ, a] and

∫ x

b−λ
u (t) dt ≤

∫ x

a

w (t) dt for x ∈ 〈a, b] ,

in case λ > b− a.
Further for u ≡ 1 we have

∫ b
a
w (t) dt =

∫ b
b−λ u (t) dt = λ. Thus if 0 ≤ w (t) ≤ 1

for t ∈ [a, b] then λ ≤ b− a and it’s easy to see that (3.6) is fulfilled since

x− b+ λ =

∫ x

b−λ
u (t) dt ≤

∫ x

a

w (t) dt = λ−
∫ b

x

w (t) dt.
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In a such a way the left-hand side of the Steffensen’s inequality (1.1) is recaptured.

4. Lp inequalities

Here, the symbol Lp[a,b] (1 ≤ p <∞) denotes the space of p-power integrable
functions on the interval [a, b] equipped with the norm

‖f‖p,[a,b] =

(∫ b

a

|f (t)|p dt

) 1
p

and L∞[a,b]denotes the space of essentially bounded functions on [a, b] with the norm

‖f‖∞,[a,b] = ess sup
t∈[a,b]

|f (t)| .

Theorem 5. Suppose that all the assumptions of Theorem 3 hold. Additionally
assume (p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1

p + 1
q = 1,

and f (n) ∈ Lp[a,b]∪[c,d]. Then the following inequality holds∣∣∣∣∣ 1∫ d
c
u1 (t) dt

∫ d

c

u1 (t) f (t) dt− T [a,b]
w1,..,wn (x)

− 1∫ b
a
w1 (t) dt

∫ b

a

w1 (t) f (t) dt+ T [c,d]
u1,..,un (x)

∣∣∣∣∣
≤ ‖K (x, t1, . . . , tn−1, ·)‖q,[min{a,c},max{b,d}]

∥∥∥f (n)∥∥∥
p,[min{a,c},max{b,d}]

(4.1)

Inequality (4.1) is sharp for 1 < p ≤ ∞ and for p = 1 constant
‖K (x, t1, . . . , tn−1, ·)‖q,[min{a,c},max{b,d}] is the best possible.

Proof. By taking the modulus on (2.1) and applying the Hölder inequality we
obtain ∣∣∣∣∣ 1∫ d

c
u1 (t) dt

∫ d

c

u1 (t) f (t) dt− T [a,b]
w1,..,wn (x)

− 1∫ b
a
w1 (t) dt

∫ b

a

w1 (t) f (t) dt+ T [c,d]
u1,..,un (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ max{b,d}

min{a,c}
K (x, t1, . . . , tn) f (n) (tn) dtn

∣∣∣∣∣
≤ ‖K (x, t1, . . . , tn−1, ·)‖q,[min{a,c},max{b,d}]

∥∥∥f (n)∥∥∥
p,[min{a,c},max{b,d}]

Let’s denote C (t) = K (x, t1, . . . , tn−1, t). For the proof of the sharpness we will
find a function f for which the equality in (4.1) is obtained.

For 1 < p <∞ take f to be such that

f (n) (t) = sgn C (t) · |C (t)|
1
p−1 .
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For p =∞ take
f (n) (t) = sgn C (t) .

For p = 1 we shall prove that∣∣∣∣∣
∫ max{b,d}

min{a,c}
C (t) f (n) (t) dt

∣∣∣∣∣ ≤ max
t∈[min{a,c},max{b,d}]

|C (t)|

(∫ max{b,d}

min{a,c}

∣∣∣f (n) (t)
∣∣∣ dt)
(4.2)

is the best possible inequality.
If n ≥ 2 function C (t) is continuous except in points max {a, c} and min {b, d}

where it has a finite jump. If n = 1 it is continuous. Thus we have four possibilities:
1. |C(t)| attains its maximum at t0 ∈ [min {a, c} ,max {b, d}] and C (t0) > 0.

Then for ε > 0 small enough define fε (t) by

fε (t) =


0, min {a, c} ≤ t ≤ t0 − ε,

1
εn! (t− t0 + ε)

n
, t0 − ε ≤ t ≤ t0,

1
n! (t− t0 + ε)

n−1
, t0 ≤ t ≤ max {b, d} .

Thus ∣∣∣∣∣
∫ max{b,d}

min{a,c}
C(t)f (n)ε (t)dt

∣∣∣∣∣ =

∣∣∣∣∫ t0

t0−ε
C(t)

1

ε
dt

∣∣∣∣ =
1

ε

∫ t0

t0−ε
C(t)dt.

Now, from inequality (4.2) we have

1

ε

∫ t0

t0−ε
C(t)dt ≤ 1

ε
C(t0)

∫ t0

t0−ε
dt = C(t0).

Since

lim
ε→0
ε>0

1

ε

∫ t0

t0−ε
C(t)dt = C(t0)

the statement follows.
2. |C(t)| attains its maximum at t0 ∈ [min {a, c} ,max {b, d}] and C (t0) < 0.

Then for ε > 0 small enough define fε (t) by

fε (t) =


1
n! (t0 − t)n−1 , min {a, c} ≤ t ≤ t0 − ε,
− 1
εn! (t0 − t)n , t0 − ε ≤ t ≤ t0,

0, t0 ≤ t ≤ max {b, d} ,
and the rest of proof is similar as above.

3. |C(t)| does not attains a maximum on the [min {a, c} ,max {b, d}] and let
t0 ∈ [min {a, c} ,max {b, d}] be such that

sup
t∈[min{a,c},max{b,d}]

|C(t)|= lim
ε→0
ε>0

|f (t0 + ε)|

If limε→0
ε>0

f (t0 + ε) > 0, we take

fε (t) =


0, min {a, c} ≤ t ≤ t0,

1
εn! (t− t0)

n
, t0 ≤ t ≤ t0 + ε,

1
n! (t− t0)

n−1
, t0 + ε ≤ t ≤ max {b, d} ,
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and similar as before we have∣∣∣∣∣
∫ max{b,d}

min{a,c}
C(t)f (n)ε (t)dt

∣∣∣∣∣ =

∣∣∣∣∫ t0+ε

t0

C(t)
1

ε
dt

∣∣∣∣ =
1

ε

∫ t0+ε

t0

C(t)dt,

1

ε

∫ t0+ε

t0

C(t)dt ≤ 1

ε
C(t0)

∫ t0+ε

t0

dt = C(t0),

lim
ε→0
ε>0

1

ε

∫ t0+ε

t0

C(t)dt = C(t0)

and the statement follows.
4. |C(t)| does not attains a maximum on the [min {a, c} ,max {b, d}] and let

t0 ∈ [min {a, c} ,max {b, d}] be such that

sup
t∈[min{a,c},max{b,d}]

|C(t)|= lim
ε→0
ε>0

|f (t0 + ε)| .

If limε→0
ε>0

f (t0 + ε) < 0, we take

fε (t) =


1
n! (t− t0 − ε)n−1 , min {a, c} ≤ t ≤ t0,
− 1
εn! (t− t0 − ε)n , t0 ≤ t ≤ t0 + ε,

0, t0 + ε ≤ t ≤ max {b, d} ,

and the rest of proof is similar as above. �

Corollary 5.1. Let f : [a, b] ∪ [a, a+ λ] → R be such f ′ ∈ Lp[a,b]∪[a,a+λ] and

g : [a, b]→ R integrable function such λ =
∫ b
a
g (t) dt. Let also G (x) =

∫ x
a
g (t) dt,

x ∈ [a, b]. Then the following two sharp inequalities hold for 1 < p ≤ ∞ and for
0 ≤ λ ≤ b− a∣∣∣∣∣

∫ b

a

f (t) g (t) dt−
∫ a+λ

a

f (t) dt

∣∣∣∣∣
≤

(∫ a+λ

a

|t− a−G (t)|q dt+

∫ b

a+λ

|λ−G (t)|q dt

) 1
q ∥∥∥f ′∥∥∥

p,[a,max{b,a+λ}]

while for λ > b− a∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ a+λ

a

f (t) dt

∣∣∣∣∣
≤

(∫ b

a

|t− a−G (t)|q dt+

∫ a+λ

b

|t− a− λ|q dt

) 1
q ∥∥∥f ′∥∥∥

p,[a,max{b,a+λ}]
.

In case p = 1 and 0 ≤ λ ≤ b− a we have following two best possible inequalities∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ a+λ

a

f (t) dt

∣∣∣∣∣
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≤ max

{
max

t∈[a,a+λ]
|t− a−G (t)| , max

t∈[a+λ,b]
|λ−G (t)|

}∥∥∥f ′∥∥∥
1,[a,max{b,a+λ}]

while for λ > b− a∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ a+λ

a

f (t) dt

∣∣∣∣∣
≤ max

{
max
t∈[a,b]

|t− a−G (t)| , max
t∈[b,a+λ]

|t− a− λ|
}∥∥∥f ′∥∥∥

1,[a,max{b,a+λ}]
.

Proof. Applying Theorem 5 with n = 1 and weight functions w1 (t) = g (t) for
t ∈ [a, b] and u1 (t) = 1 for t ∈ [a, a+ λ]. We have

∫ b
a
g (t) dt =

∫ a+λ
a

dt = λ and
consequently∣∣∣∣∣

∫ b

a

f (t) g (t) dt−
∫ a+λ

a

f (t) dt

∣∣∣∣∣ =

∣∣∣∣∣λ
∫ max{b,a+λ}

a

K (t) f ′ (t) dt

∣∣∣∣∣
where

λK (t) =


t− a−

∫ t
a
g (s) ds, t ∈ [a, a+ λ] ,∫ b

t
g (s) ds, t ∈ 〈a+ λ, b] ,

if a+ λ ≤ b,

λK (t) =

 t− a−
∫ t
a
g (s) ds, t ∈ [a, b] ,

t− a− λ, t ∈ 〈b, a+ λ] ,

if a+ λ > b,

and the proof follows. �

Corollary 5.2. Let f : [a, b] ∪ [b− λ, b] → R be such f ′ ∈ Lp[a,b]∪[b−λ,b] and

g : [a, b]→ R integrable function such λ =
∫ b
a
g (t) dt. Let also G (x) =

∫ x
a
g (t) dt,

x ∈ [a, b]. Then the following two sharp inequalities hold for 1 < p ≤ ∞ and for
0 ≤ λ ≤ b− a
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∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ b

b−λ
f (t) dt

∣∣∣∣∣
≤

(∫ b−λ

a

|−G (t)|q dt+

∫ b

b−λ
|t− b+ λ−G (t)|q dt

) 1
q ∥∥∥f ′∥∥∥

p,[a,max{b,a+λ}]

while for λ > b− a∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ b

b−λ
f (t) dt

∣∣∣∣∣
≤

(∫ a

b−λ
|t− b+ λ|q dt+

∫ b

a

|t− b+ λ−G (t)|q dt

) 1
q ∥∥∥f ′∥∥∥

p,[a,max{b,a+λ}]
.

In case p = 1 and 0 ≤ λ ≤ b− a we have following two best possible inequalities∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ b

b−λ
f (t) dt

∣∣∣∣∣
≤ max

{
max

t∈[a,b−λ]
|−G (t)| , max

t∈[b−λ,b]
|t− b+ λ−G (t)|

}∥∥∥f ′∥∥∥
1,[a,max{b,a+λ}]

while for λ > b− a∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ b

b−λ
f (t) dt

∣∣∣∣∣
≤ max

{
max

t∈[b−λ,a]
|t− b+ λ| , max

t∈[a,b]
|t− b+ λ−G (t)|

}∥∥∥f ′∥∥∥
1,[a,max{b,a+λ}]

.

Proof. Applying Theorem 5 with n = 1 and weight functions w1 (t) = g (t) for
t ∈ [a, b] and u1 (t) = 1 for t ∈ [b− λ, b]. We have

∫ b
a
g (t) dt =

∫ b
b−λ dt = λ and

consequently∣∣∣∣∣
∫ b

a

f (t) g (t) dt−
∫ b

b−λ
f (t) dt

∣∣∣∣∣ =

∣∣∣∣∣λ
∫ b

min{a,b−λ}
K (t) f ′ (t) dt

∣∣∣∣∣
where

λK (t) =

 −G (t) , t ∈ [a, b− λ] ,

t− b+ λ−G (t) , t ∈ 〈b− λ, b] ,
if a+ λ ≤ b,

λK (t) =

 t− b+ λ, t ∈ [b− λ, a] ,

t− b+ λ−G (t) , t ∈ 〈a, b] ,
if a+ λ > b,

and the proof follows. �
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5. k−exponential convexity of Steffensen’s inequality via n weight
functions

Motivated by inequalities (2.6), (3.2), (3.5), and under assumptions of Theorem
4 and Corollaries 4.1 and 4.2, respectively, we define following linear functionals:

L1(f) =
1∫ d

c
u1 (t) dt

∫ d

c

u1 (t) f (t) dt+ T [c,d]
u1,..,un (x)

− 1∫ b
a
w1 (t) dt

∫ b

a

w1 (t) f (t) dt− T [a,b]
w1,..,wn (x) (5.1)

L2(f) =
1∫ a+λ

a
u1 (t) dt

∫ a+λ

a

u1 (t) f (t) dt+ T [a,a+λ]
u1,..,un (x)

− 1∫ b
a
w1 (t) dt

∫ b

a

w1 (t) f (t) dt− T [a,b]
w1,..,wn (x) (5.2)

L3(f) =
1∫ b

a
w1 (t) dt

∫ b

a

w1 (t) f (t) dt+ T [a,b]
w1,..,wn (x)

− 1∫ b
b−λ u1 (t) dt

∫ b

b−λ
u1 (t) f (t) dt− T [b−λ,b]

u1,..,un (x) (5.3)

Remark 5.1: Under the assumptions of Theorem 4 and Corollaries 4.1 and 4.2
respectively, it holds Li(f) ≥ 0, i = 1, 2, 3 for all n-convex functions f.

Also, we define I1 = [a, b] ∪ [c, d], I2 = [a, b] ∪ [a, a + λ], I3 = [a, b] ∪ [b − λ, b],
Ĩ1 = [a, b] ∩ [c, d], Ĩ2 = [a, b] ∩ [a, a + λ] and Ĩ3 = [a, b] ∪ [b − λ, b]. Now, we give
mean value theorems for defined functionals.

Theorem 6. Let f : Ii → R (i = 1, 2, 3) be such that f ∈ Cn(Ii) . If for x ∈ Ĩi
inequalities in (2.5) (i = 1), (3.1) (i = 2) and (3.4) (i = 3) hold, then there exist
ξi ∈ Ĩi such that

Li(f) = f (n)(ξi)Li(ϕ), i = 1, 2, 3 (5.4)

where ϕ(x) = xn

n! .

Proof. Let us denote m = min f (n) and M = max f (n). We consider the following
functions F1(x) = Mxn

n! − f(x) and F2(x) = f(x) − mxn

n! . Then F
(n)
1 (x) = M −

f (n) ≥ 0 and F (n)
2 (x) = f (n)(x) −m ≥ 0, for x ∈ Ĩi, so F1 and F2 are n−convex

functions. Now we use inequalities from Theorem 4 and Corollaries 4.1 and 4.2 for
n−convex functions F1 i F2, so we can conclude that there exists ξi ∈ Ĩi, i = 1, 2, 3
that we are looking for in (5.4). �

Theorem 7. Let f, g : Ii → R (i = 1, 2, 3) be such that f, g ∈ Cn(Ii). If for x ∈ Ĩi
inequalities in (2.5) (i = 1), (3.1) (i = 2) and (3.4) (i = 3) hold, then there exist
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ξi ∈ Ĩi such that
Li(f)

Li(g)
=
f (n)(ξi)

g(n)(ξi)
, i = 1, 2, 3. (5.5)

assuming neither of the denominators is equal to zero.

Proof. For fix 1 ≤ i ≤ 3 we define function Φi(x) = f(x)Li(g) − g(x)Li(f).

According to Theorem 6 there exists ξi ∈ Ĩi such that Li(Φi) = Φ
(n)
i (ξi)Li(ϕ).

Since Li(Φi) = 0 it follows that f (n)(ξi)Li(g) − g(n)(ξi)Li(f) = 0 and (5.5) is
proved. �

We use previously defined functionals to construct exponentially convex func-
tions, a special type of convex functions that are invented by S. N. Bernstein
over eighty years ago in [8]. First, let us recall some definitions and facts about
exponentially convex functions (see [13]).

Definition 5.1. A function ψ : I → R is k-exponentially convex in the Jensen
sense on I if

k∑
i,j=1

ξiξj ψ

(
xi + xj

2

)
≥ 0,

holds for all choices ξ1, . . . , ξk ∈ R and all choices x1, . . . , xk ∈ I. A function
ψ : I → R is k-exponentially convex if it is k-exponentially convex in the Jensen
sense and continuous on I.

Remark 5.2: It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions. Also, k-exponentially convex
function in the Jensen sense are m-exponentially convex in the Jensen sense for
every m ∈ N, m ≤ k.
Definition 5.2. A function ψ : I → R is exponentially convex in the Jensen sense
on I if it is k-exponentially convex in the Jensen sense for any k ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

Remark 5.3: A positive function is log-convex in the Jensen sense if and only if
it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex (see
[9]).

Proposition 5.1. If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 6=
x2, y1 6= y2, then the following inequality is valid

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
.

If the function f is concave, the inequality is reversed.

Definition 5.3. Let f be a real-valued function defined on the segment [a, b]. The
divided difference of order n of the function f at distinct points x0, ..., xn ∈ [a, b],
is defined recursively (see [7], [14]) by

f [xi] = f(xi), (i = 0, . . . , n)
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and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.
The definition may be extended to include the case that some (or all) of the points
coincide. Assuming that f (j−1)(x) exists, we define

f [x, . . . , x︸ ︷︷ ︸
j−times

] =
f (j−1)(x)

(j − 1)!
. (5.6)

Now, we use an idea from [9] to generate k-exponentially and exponentially
convex functions applying defined functionals. In the sequel the notion log denotes
the natural logarithm function.

Theorem 8. Let Ω = {fp : p ∈ J}, where J is an interval in R, be a family of
functions defined on an interval Ii, i = 1, 2, 3 subset of R such that the function
p 7→ fp[x0, . . . , xn] is k−exponentially convex in the Jensen sense on J for every
(n + 1) mutually different points x0, . . . , xn ∈ Ii, i = 1, 2, 3. Let Li, i = 1, 2, 3
be linear functionals defined by (5.1)-(5.3). Then p 7→ Li(fp) is k−exponentially
convex function in the Jensen sense on J .
If the function p 7→ Li(fp) is continuous on J , then it is k−exponentially convex
on J .

Proof. For ξj ∈ R, j = 1, . . . , k and pj ∈ J, j = 1, . . . , k, we define the function

g(x) =

k∑
j,m=1

ξjξmf pj+pm
2

(x).

Using the assumption that the function p 7→ fp[x0, . . . , xn] is k-exponentially con-
vex in the Jensen sense, we have

g[x0, . . . , xn] =

k∑
j,m=1

ξjξmf pj+pm
2

[x0, . . . , xn] ≥ 0,

which in turn implies that g is a n-convex function on J , so it is Li(g) ≥ 0, i =
1, 2, 3. Hence

k∑
j,m=1

ξjξmLi

(
f pj+pm

2

)
≥ 0.

We conclude that the function p 7→ Li(fp) is k-exponentially convex on J in the
Jensen sense.

If the function p 7→ Li(fp) is also continuous on J , then p 7→ Li(fp) is k-
exponentially convex by definition. �

The following corollaries are the immediate consequences of the above theorem:
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Corollary 8.1. Let Ω = {fp : p ∈ J}, where J an interval in R, be a family of
functions defined on an interval Ii, i = 1, 2, 3 subset of R, such that the function
p 7→ fp[x0, . . . , xn] is exponentially convex in the Jensen sense on J for every
(n + 1) mutually different points x0, . . . , xn ∈ Ii. Let Li, i = 1, 2, 3, be linear
functionals defined as in (5.1)-(5.3). Then p 7→ Li(fp) is an exponentially convex
function in the Jensen sense on J . If the function p 7→ Li(fp) is continuous on J,
then it is exponentially convex on J .

Corollary 8.2. Let Ω = {fp : p ∈ J}, where J an interval in R, be a family of
functions defined on an interval Ii, i = 1, 2, 3 subset of R, such that the function
p 7→ fp[x0, . . . , xn] is 2-exponentially convex in the Jensen sense on J for every
(m + 1) mutually different points x0, . . . , xn ∈ Ii. Let Li, i = 1, 2, 3 be linear
functionals defined as in (5.1)-(5.3). Then the following statements hold:

(i) If the function p 7→ Li(fp) is continuous on J , then it is 2-exponentially
convex function on J . If p 7→ Li(fp) is additionally strictly positive, then
it is also log-convex on J . Furthermore, the following inequality holds true:

[Li(fs)]
t−r ≤ [Li(fr)]

t−s
[Li(ft)]

s−r

for every choice r, s, t ∈ J , such that r < s < t.
(ii) If the function p 7→ Li(fp) is strictly positive and differentiable on J, then

for every p, q, u, v ∈ J , such that p ≤ u and q ≤ v, we have

µp,q(Li,Ω) ≤ µu,v(Li,Ω), (5.7)

where

µp,q(Li,Ω) =


(
Li(fp)
Li(fq)

) 1
p−q

, p 6= q,

exp

(
d
dpLi(fp)

Li(fp)

)
, p = q,

(5.8)

for fp, fq ∈ Ω.

Proof. (i) This is an immediate consequence of Theorem 8 and Remark 5.3.
(ii) Since the function p 7→ Li(fp), i = 1, 2, 3 is positive and continuous,

according to (i) the function p 7→ Li(fp) is log-convex on J , and thus the
function p 7→ logLi(fp) is convex on J . Applying Proposition 5.1 we get

logLi(fp)− logLi(fq)

p− q
≤ logLi(fu)− logLi(fv)

u− v
, (5.9)

for p ≤ u, q ≤ v, p 6= q, u 6= v. Hence we conclude that

µp,q(Li,Ω) ≤ µu,v(Li,Ω).

Cases p = q and u = v follows from (5.9) as limit cases.
�

Remark 5.4: Note that the results from above theorem and corollaries still hold
when two of the points x0, . . . , xn ∈ Ii, i = 1, 2, 3 coincide, say x1 = x0, for a
family of differentiable functions fp such that the function p 7→ fp[x0, . . . , xn] is
k-exponentially convex in the Jensen sense (exponentially convex in the Jensen
sense, log-convex in the Jensen sense), and furthermore, they still hold when all
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n+ 1 points coincide for a family of n-times differentiable functions with the same
property. The proofs use (5.6) and suitable characterization of convexity.

6. Applications to Stolarsky type means

In this section, we present several families of functions which fulfil the conditions
of Theorem 8, Corollary 8.1, Corollary 8.2 and Remark 5.4. This enable us to
construct a concrete examples of exponentially convex functions.

Example 6.1. Consider a family of functions

Ω1 = {fp : R→ R : p ∈ R}
defined by

fp(x) =

{ epx

pn , p 6= 0,
xn

n! , p = 0.

We have dnfp
dxn (x) = epx > 0 which shows that fp is n-convex on R for every p ∈ R

and p 7→ dnfp
dxn (x) is exponentially convex by definition. Using analogous arguing

as in the proof of Theorem 8 we also have that p 7→ fp[x0, . . . , xn] is exponentially
convex (and so exponentially convex in the Jensen sense). Using Corollary 8.1 we
conclude that p 7→ Li(fp), i = 1, 2, 3, are exponentially convex in the Jensen sense.
It is easy to verify that this mapping is continuous (although mapping p 7→ fp is
not continuous for p = 0), so it is exponentially convex.

For this family of functions, µp,q(Li,Ω1), i = 1, 2, 3, from (5.8), becomes

µp,q(Li,Ω1) =


(
Li(fp)
Li(fq)

) 1
p−q

, p 6= q,

exp
(
Li(id·fp)
Li(fp)

− n
p

)
, p = q 6= 0,

exp
(

1
n+1

Li(id·f0)
Li(f0)

)
, p = q = 0.

where id is the identity function. Also, by Corollary 8.2 it is monotonic function
in parameters p and q.

We observe here that
(

dnfp
dxn

dnfq
dxn

) 1
p−q

(log x) = x so using Theorem 7 it follows that:

Mp,q(Li,Ω1) = log µp,q(Li,Ω1), i = 1, 2, 3

satisfies

min{a, c, b− λ} ≤Mp,q(Li,Ω1) ≤ max{a+ λ, b, d}, i = 1, 2, 3.

So, Mp,q(Li,Ω1), i = 1, 2, 3 is monotonic mean.

Example 6.2. Consider a family of functions

Ω2 = {gp : (0,∞)→ R : p ∈ R}
defined by

gp(x) =

{
xp

p(p−1)···(p−n+1) , p /∈ {0, 1, . . . , n− 1},
xj ln x

(−1)n−1−jj!(n−1−j)! , p = j ∈ {0, 1, . . . , n− 1}.
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Here, dngp
dxn (x) = xp−n = e(p−n) ln x > 0 which shows that gp is n-convex for x > 0

and p 7→ dngp
dxn (x) is exponentially convex by definition. Arguing as in Example 6.1

we get that the mappings p 7→ Li(gp), i = 1, 2, 3 are exponentially convex. In this
case we assume that Ii ∈ R+. Functions (5.8) is now equal to:

µp,q(Li,Ω2) =



(
Li(gp)
Li(gq)

) 1
p−q

, p 6= q,

exp
(

(−1)n−1(n− 1)!
Li(g0gp)
Li(gp)

+
∑n−1
k=0

1
k−p

)
,

p = q /∈ {0, 1, . . . , n− 1},

exp

(
(−1)n−1(n− 1)!

Li(g0gp)
2Li(gp)

+
∑n−1

k=0
k 6=p

1
k−p

)
,

p = q ∈ {0, 1, . . . , n− 1}.
Again, using Theorem 7 we conclude that

min{a, c, b− λ} ≤
(
Li(gp)

Li(gq)

) 1
p−q

≤ max{b, d, a+ λ}, i = 1, 2, 3,

which shows that µp,q(Li,Ω2), i = 1, 2, 3 is mean.

Example 6.3. Consider a family of functions

Ω3 = {φp : (0,∞)→ R : p ∈ (0,∞)}
defined by

φp(x) =

{
p−x

(− ln p)n , p 6= 1
xn

n! , p = 1.

Since dnφp
dxn (x) = p−x is the Laplace transform of a non-negative function (see [16])

it is exponentially convex. Obviously φp are n-convex functions for every p > 0.
For this family of functions, µp,q(Li,Ω3), i = 1, 2, 3, in this case for Ii ∈ R+, from
(5.8) becomes

µp,q(Li,Ω3) =


(
Li(φp)
Li(φq)

) 1
p−q

, p 6= q,

exp
(
−Li(id·φp)pi(φp)

− n
p ln p

)
, p = q 6= 1,

exp
(
− 1
n+1

Li(id·φ1)
Li(φ1)

)
, p = q = 1.

This is monotone function in parameters p and q by (5.7). Using Theorem 7 it
follows that

Mp,q(Li,Ω3) = −L(p, q) logµp,q(Li,Ω3), i = 1, 2, 3

satisfy

min{a, c, b− λ} ≤Mp,q(Li,Ω3) ≤ max{b, d, a+ λ}, i = 1, 2, 3.

So Mp,q(Li,Ω3) is monotonic mean. L(p, q) is logarithmic mean defined by

L(p, q) =

{
p−q

log p−log q , p 6= q

p, p = q.
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Example 6.4. Consider a family of functions

Ω4 = {ψp : (0,∞)→ R : p ∈ (0,∞)}

defined by

ψp(x) =
e−x
√
p

(−√p)n
.

Since dnψp
dxn (x) = e−x

√
p is the Laplace transform of a non-negative function (see

[16]) it is exponentially convex. Obviously ψp are n-convex functions for every
p > 0. For this family of functions, µp,q(Li,Ω4), i = 1, 2, 3 from (5.8) is equal to

µp,q(Li,Ω4) =


(
Li(ψp)
Li(ψq)

) 1
p−q

, p 6= q,

exp
(
− Li(id·ψp)

2
√
pLi(ψp)

− n
2p

)
, p = q,

where id is the identity function. This is monotone function in parameters p and
q by (5.7). Using Theorem 7 it follows that

Ms,q(Li,Ω4) = −(
√
p+
√
q) logµp,q(Li,Ω4), i = 1, 2, 3

satisfies min{a, c, b− λ} ≤Mp,q(Li,Ω4) ≤ max{b, d, a+ λ}, so Mp,q(Li,Ω4),
i = 1, 2, 3 is monotonic mean.
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