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1. Introduction and summary. An interesting binomial sum

(1.'1,‘ F(—-—n, E,]-i—l 42) Z (— )k(n)(Zkk)(j-i];k)—‘ z*

arises from the definition of the hypergeometric series. The series does not
seem to have been evaluated in closed form in - general. A few special
cases have appeared in the literature. Because of the wellknown formula
of G uss for the special case F(a, b, c; 1), we know that

. PANg |
F(—n, L+ 1)=2—2n (2”“1)(2{) .
2 n+j J

Sandham [3] posed as an easy problem to show that
1. .
(1.2) F(—Zn, ;, n+1; 4)=1,

and Spiegel [4] proved this Euler’s integral. Looking at the simplicity of
(1.2) suggested to me that progress might be made with (1.1) in' the case
z=1/4. The results given below represent a condensation to the study of
combinatorial identities the results seem to be of interest, though the ge-
neral pattern of the coefficients below has not been determined.

It is convenient to consider (1.1) according to the parity of », and
we consider below

1
(1.3) . S}'=F(—2n,§-,n+j+1;4)
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and’
4 R}'=E(—2n—1,—;, n+j+1;4).

We obtain the recurrence relations

M4 Y+l g e
(1.5) 2 S =38+ R

#:r_] +1 + \j
and T

n+ 2
(1.6) 2t A A g agr s

n+j+1

which, together with some initial values, are sufficient to generate the
following Table of special values. ‘

TABLE OF VALUES

i S | R
—1 |3 @>Dn M2 1)
0 | , s -1 !
1 n+1 0
2n-+1
2 2@ +1) (n+2) n+42
2Q2n+1) 2n+3) 22n + 3)
3 n+2)(n+3)(11n4-10) 5(m+2)(n+3)
4(2n-+1)(2n+3) (2n+5) 4 (2n+3) 2n+5)
(n+2) (n+3) (n+4) (43n-+35) 21 (n+2) (n+3) (n4+4)
! 8(2n+1)(2n+3)(2n+5)(2n+-7) 8(2n+3) 2n+5) 2n+7)

The formulas in the Table are valid for n 2> 0 except as indicated.
For the general case we find that

Jj

1.7 Sr=2—jgmy MM Qn+2i—1yr j>1,
i=1 '

and

J :
(1.8) B=2fmen+2—17  j>1
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As a mater of fact these follow by repeated use of (1.5) and (1.6). Here
gs(n) and fy(n) are some polynomials in n of degree j (for g) and j — 1
(for ) whose form we have not determined exactly.

Finally, we obtain the finite series

F(-‘n’ '%‘a J+ 1 4Z)=

i\—1 t=—1 2 2\n
=2"% (ZJ ) L D (cos zlk) ’ {1—4z(sin h—k) }
J t k=0 t . t
which is valid for integers ¢ > 2n + 2j, and is of the type considered by

Good [2], Carlitz [1] and others, for Legendre polynomials and other cla-
ssical polynomials.

(1.9)

2. Proofs of the formulas. We apply the well-known integral formula

. —1 PR | 2
.10 23(7 +k) = 2% +2%k+1 (2J ) L[ sin%x cos¥ x dx
k k. J T Jo

to (1.1) and this yields *

2\ —1 2
2.2) F(— n, % Y EN 42) = 2%+ (21) fn/ cos¥x (1—4z sin?x)* dx=
J 0

iN—1 [l
=¥ (21 ) [ (cos 2nx)¥ (1—4z sin? 2nx)” dx.
J 0

which is symmetrical in sin and cos because of (2.1). On may also say
that (2.2) follow from Euler’s integral transformation.

It is from this integral that we find (1.9) at onse because of the fun-
damental lemma: If f(x) is any polynomial in x of degree n, then

t=1 1
2.3) —i— Z f(cos %—k) = f Sf(cos 2nex) dx, for t > n.
k==0 t 0

Taking account of the trigonometric identity cosx(l —4sin®x) =
=cos 3x we obtain from (2.2) and (1.3)—(1.4)

2 A 2
(2.4 S7 = 22nt2j+1 ( "2 ) —1- it cos? x cos? 3x dx, !
' ntj ) ®Jy
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and

. 2n+2j\"t 1 (=2
(2.5)  R'=2mt2i41 ( "t j]) - f cos¥—1 x cos?"+13x dx.
0 .

Combining these we obtain

. ) 2n4+2j 11 w2 )
S; — R} = 22nt2jt1 . — cos? ~1x cos?® 3x(cosx — cos 3x)dx
j \j n+j 7w Jo

which simplifies (using cos x — cos 3x = 4cos x — 4cos?x) to

n T 2n+2j4+1 4
VR = A = S
which is precisely (1.5).

To obtain (1.6) we must only simplify the difference

2n + 25 + 1

P R;+.1—3R7

Y

in a similar way.

From (2.4) we have Sandham’s formula Sg=1 at once.
To show that Ri =0 it is sufficient to note that

/2
cos x cos?®t1 3x dx =0
0

since the integrand can be written as a sum of cosines of multiples of 2x.
The value of R; now follows from (1.6) using S and Rj.

The value of Rp is found as follows. When j =0 the integrand in (2.5)

may be written (using identities) in the form (—1 42 cos 2x) cos*” 3x,

so that

R 2n\~1 1 [=/2
Ry, =—2¥+1 " .y cos?” 3x dx +

0

2n N\t 1 [m/2
+ 2@nt2 — cos?® 3x cos 2x dx
n TS,

= — 1, since the second integral is identically zero (being that the integ-
, rand is a sum of consines of multiples of 2x).
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The value of S now follows from (1.5) using S, and Ry. The re-
mainder of the Table is now easily obtained by using (1 5) and (1.6).

It is true that the recurrence relations (1.5)—(1.6) could be combi-
ned into a single relation in various ways, but it is advantageous to have
them in the form given.

If we next compare (1.7) with (2.4) and (1.8) with (3.5) we find

. __l 2
(2.6) fi(n)=j! 23n+2 (n T ) (Zn ) L f K cos?—1x cos*" ! 3x dx
n n 2n+1/, /

and
. 1 o
2.7 gy(n) = jl2n+2i ( ntJ ) ( 2") ] & cos?/x cos?” 3x dx.
h 0

n

These relations reveal in a way why it is relatively easy to express
the original series in terms of »n but not so easy in terms of j. For we
may convert an integral of the form

t/2
cosPx cosd 3x dx

0

into a series of terms by using cos 3x = cos x(1 —4sin%x), and then use
the binomial theorem and integrate terml by term. This gives a series the
number of whose terms depends on ¢. But it is more difficult to replace
cos x by something in terms of cos 3x. This would give a series the num-
ber of whose terms depends on p. Expansions of this sort would allow us
to sum some other similar series.

It is possible to use the Euler transformatxon

F(a, b, ¢c; 2)=(1 —z)—“(a, c—b, c; zl)
z___

to convert our series into another form, and the result is

1 . 27\ & (n\(2+2%
Fl—n, —, j+1; 42):( ) ( )( )2—2" 4z)k (1—4z)"—*
( 2 J kZ_::O kJ\ j+k @2 )

and this might shed more light on the sum, but we have not found
a simple result.

3. Condensation of results. It is interesting to note that the values
tabulated above for the several special cases may be expressed in a con-
densed form by use of the bracket function. Recalling that [x] denotes the
greatest integer <{ x it is not difficult to see that part of the table we
gave above may be summariced in the following formulas:

G.1) F(—n,—;—-,[g];) (8+ )(_1)# n>2,
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which combines S”; and R”;;

3.2 ‘F(—-— n, %, [n—;l]; 4)=2(—-—1)"+1, n>1,

which combines S*; and R;

(.3) F(—m-%,r§2}4}=94ﬂ n>0,

which combines S; and Rj;

(3.4 F(—n, %, [n+3]; 4)=_(:1X_tl_, n>>0,

2 2

which combines Sy and Rf;

1 [n+4] n 2 (1)1
33 Fl—n —, |22 4)= , >0,
G3) ( "2 [2 ]) 20+1) 2 n=>

which combines ST and R}
What may be the general rule we have not discovered.

£
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EVALUTION OF THE FINITE HYPERGEOMETRIC
. SERIES F(—n, —;w,j+1;4)

H. W. Gould
(ABSTRACT)

Recurence relations, depending on the parity of », are given for the

binomial sum
S AY AV R —1
S (G0

from which the sum inay be calculated for any integer j. A short table
for —1 < j <4 is given. Various other results appear, and the bracket
function is used to simplify the expressions. For example, it shown tha

F(_n"i’ [n]; 4) =3 _(8_‘_1)_(___12&,
2 2 n, 2

for n>>2. A closed form the generdl case in not found, but some infor-
mation about the general sum is found.* The sum is found to be a quo-
tient of polynomias, the denominator polynomials having a very simple form.
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