## ON TOPOLOGICAL n-GROUPS

# G. Čupona

In this note it is shown that each topological n-group can be embedded into a topological group.

At first, some preliminary definitions and results will be stated.

Let Q be a non-empty set and:

$$(\dots) : (x_0, \dots, x_n) \to (x_0 \cdots x_n)$$

$$[\dots] : (x_0, \dots, x_n) \to [x_n \cdots x_1 \setminus x_0]$$

$$[\dots] : (x_0, \dots, x_n) \to [x_0 / x_n \cdots x_2]$$

$$(1)$$

be three n+1-ary operations on  $Q \cdot Q$  is said to be an *n*-group if the following identities are satisfied.

$$((x_0 \cdots x_n) \cdots x_{2n}) = (x_0 (x_1 \cdots x_{n+1}) \cdots x_{2n}) = \dots = (x_0 \cdots (x_n \cdots x_{2n}))$$
 (2)

$$(x_1 \cdots x_n [x_n \cdots x_1 \setminus x]) = x = ([x / x_n \cdots x_1] x_1 \cdots x_n).$$
 (3)

An *n*-group Q is said to be a topological *n*-group if Q is a topological space such that the operations (...), [...] and [/..] are continous (in the all variables together).

The following result is known as Post's Coset Theorem<sup>1</sup>). If Q is an n-group then there is a unique (within to a canonical isomorphism) group G such that:

$$G = Q U Q^2 U \dots U Q^n \tag{4}$$

$$(\forall a_0, \ldots, a_n \in Q) (a_0 \cdots a_n) = a_0 \cdots a_n$$
 (5)

$$1 \leqslant i \leqslant j \leqslant n, \ a_{\nu}, \ b_{\lambda} \in Q \Rightarrow \{a_{1} \dots a_{i} = b_{1} \dots b_{j} \Leftrightarrow (b_{1} \dots b_{i}) \end{cases} \Leftrightarrow [i = j \& (\exists c_{0}, \dots, c_{n-i} \in Q)(c_{0} \dots c_{n-i} a_{i} \dots a_{i} = (c_{0} \dots c_{n-i} b_{1} \dots b_{i})]\}.$$

<sup>1) [1]</sup> p. 37, or [5] p. 218

The group G is said to be the free covering of the given n-group Q. Now we shall state and prove the following

Theorem. Let Q be a toopological n-group, and G the free covering of Q. Define a collection  $\mathcal{B}$  of subsets of G by:

$$\mathcal{B} = \{A_1 \cdots A_k \mid 1 \leqslant k \leqslant n, A_1, \dots, A_k \text{ are open in } Q\}$$
 (7)

Then we have:

- (i)  $\mathcal{B}$  is a base of a topology  $\mathcal{G}$  on G.
- (ii) The given topology on Q is induced by  $\mathcal{G}$  on Q, and Q is an open and closed subset of G.
  - (iii) G is a topological group.
- (iv) If Q is a compact (Hausdorff) n-group then G is a compact (Hausdorff) group.

First, we prove three lemmas.

1. If  $A_0, \ldots, A_n \subseteq Q$ , and  $A_n$  is an open subset of Q, then  $(A_0, \ldots, A_n) = A$  is an open subset of Q too.

*Proof.* If  $a_1, \ldots, a_n$  are arbitrary elements of Q then the mappings:  $f(x) = (a_1 \cdots a_n x)$  and  $f^{-1}(x) = [a_n \cdots a_1 \ x]$  are continous, and therefore f(x) is a homeomorphism.

2. Let  $a_1, \ldots, a_i, b_1, \ldots, b_i \in Q$ ,  $1 \le i \le n$  and  $B_1, \ldots, B_i$  be (open) neighborhoods of  $b_1, \ldots, b_i$ . If  $a_1 \cdots a_i = b_1 \cdots b_i$  (in G) then there exist neighborhoods  $A_1, \ldots, A_i$  of  $a_1, \ldots, a_i$  such that  $A_1 \cdots A_i \subseteq B_1 \cdots B_i$ .

*Proof.* By (6) there exist  $c_0, \ldots, c_{n-i} \in Q$  such that  $c = (c_0 \cdots c_{n-i} a_1 \cdots a_i) = (c_0 \cdots c_{n-i} b_1 \cdots b_i)$ , and (by 1)  $U = (c_0 \ldots c_{n-i} B_1 \ldots B_1)$  is a neighborhood of c. Therefore there exist neighborhoods  $C_0, \ldots, C_{n-i}$  of  $c_0, \ldots, c_{n-i}$ , and  $A_1, \ldots, A_i$  of  $a_1, \ldots, a_i$  such that

$$(C_0 \cdots C_{n-i} A_1 \cdots A_i) \subseteq U = (c_0 \cdots c_{n-i} B_1 \cdots B_i)$$

$$c_0 \cdots c_{n-i} A_1 \cdots A_i \subset C_0 \cdots C_{n-i} A_1 \cdots A_i \subset c_0 \cdots c_{n-i} B_1 \cdots B_i,$$

and thus we have  $A_1 \ldots A_i \subseteq B_1 \ldots B_i$ .

. е.

3. If  $a_1, \ldots, a_i, b_1, \ldots, b_{n-i} \in Q$ , and  $s = a_1 \cdots a_i$  (in G), then  $s^{-1} = [b/b_1 a_i \cdots a_1 b_{n-i} \cdots b_2] b_2 \cdots b_{n-i}. \tag{8}$ 

*Proof.* By (3) and (5) we have  $[x/x_n \cdots x_1] = x \ x_n^{-1} \cdots x_1^{-1}$ , and this implies (8).

Proof of Theorem. (i) By (4) and (7), G = U B. Assume that  $g \in A_1 \dots A_i \cap B_1 \dots B_i$ , where  $1 \le i \le n$ , and  $A_{\nu}$ ,  $B_{\nu}$  are open in Q. Then there exist  $a_{\nu} \in A_{\nu}$ ,  $b_{\nu} \in B_{\nu}$ , such that  $g = a_1 \cdots a_i = b_1 \cdots b_i$ . By 2, there exist neighborhoods  $A_1', \dots, A_i'$  of  $a_1, \dots, a_i$  such that  $A_1' \cdots A_i' \subseteq B_1 \cdots B_i$ , and thus  $g \in A_1'' \cdots A_i'' \subseteq A_1 \cdots A_i \cap B_1 \dots B_i$ , where  $A_{\nu}'' = A_{\nu} \cap A_{\nu}'$ .

(ii) By (6) and (7), Q,  $Q^2$ ,..., and  $Q^n$  are disjoint open subsets of G, and therefore they are closed too.

This proves that  $\mathcal{B}$  is a base of a topology  $\mathcal{I}$  on G.

If  $A \subseteq Q$  and if A is an open set in the given topolology on Q, then  $A \in \mathcal{B}$ , i. e. A is open in G too. Convercely, if A is an open subset of G and  $A \subseteq Q$ , then  $A = \bigcup B_i$ , where  $B_i \in \mathcal{B}$ ; by (6), for each  $i \in I$ , there exist open sets  $A_1, \ldots, A_{k_i}$  ( $1 \leqslant k_i \leqslant n$ ) such that  $B_i = A_1 \cdots A_{k_i}$ , and this, implies that  $k_i = 1$ , i. e.  $B_i = A_1$  is an open subset of Q, and therefore A is an open subset of Q too. This proves that the given topology on Q is induced by G.

(iii) Let  $s = a_1 \cdots a_i$ ,  $t = b_1 \cdots b_j$   $(i, j \le n, a_v, b_\lambda \in Q)$  be two elements of G, and g = st. Let  $C \in \mathcal{B}$  and  $g \in C$ . Then, if  $C = C_1 \cdots C_k$   $(k \le n)$ , where  $C_1, \ldots, C_k$  are open sets in Q, there exist  $c_1, \ldots, c_k \in Q$  such that  $c_v \in C_v$ , and  $g = c_1 \cdots c_k$ . Thus:

$$a_1 \cdots a_i b_1 \cdots b_j = c_1 \cdots c_k$$
.

If  $i+j \le n$ , then i+j=k, and by 1 there exist neighborhoods  $A_1, \ldots, A_i$  of  $a_1, \ldots, a_i$  and  $B_1, \ldots, B_j$  of  $b_1, \ldots, b_j$  such that

$$A_1 \cdots A_i \ B_1 \cdots B_j \subseteq C_1 \cdots C_k = C, \tag{9}$$

where  $A = A_1 \cdots A_i$  is a neighborhood of s and  $B = B_1 \cdots B_j$  is a neighborhood of t.

If i+j>n and if we put  $a=(a_1\cdots a_i\,b_1\cdots b_{n-i+1})$ , then we have  $a\ b_{n-i+2}\cdots b_j=c_1\cdots c_k$  and k=i+j-n; by 1 there exist neighborhoods A' of a and  $B_{n-i+2},\ldots,B_j$  of  $b_{n-i+2},\ldots,b_j$  such that  $A'\ B_{n-i+2}\ldots B_j\subseteq C$ . From the equation  $a=(a_1\cdots a_i\ b_1\cdots b_{n-i+1})$  follows that there exist neighborhoods  $A_1,\ldots,A_i$  of  $a_1,\ldots,a_i$  and  $B_1,\ldots,B_{n-i+1}$  of  $b_1,\ldots,b_{n-i+1}$  such that  $(A_1\ldots A_i\ B_1\ldots B_{n-i+1})\subseteq A'$ , and this implies that  $AB\subseteq C$ , where  $A=A_1\cdots A_i,\ B_1\cdots B_j=B$ . This completes the proof that the operation "·" of the group G is continous.

Assume now that  $s = a_1 \cdots a_i \in G$ , where  $1 \le i \le n$ ,  $a_r \in Q$ . If  $b_1, \ldots, b_{n-1}$  are arbitrary elements of Q, then by 3 we have  $s^{-1} = bb_2 \cdots b_{n-1}$ ,

where  $b=[b_1/b_1\,a_i\cdots a_1\,b_{n-i}\cdots b_2].$  If  $C=B'\,C_2\cdots C_{n-i}$  is a neighborhood of  $s^{-1}$ , then  $s^{-1}=b'\,c_2\cdots c_{n-i}=bb_2\cdots b_{n-i}$ , where  $b'\in B',\ c_v\in C_v'.$  By 2 there exist neighborhoods  $B,\ B_2,\ldots,B_{n-i}$  of  $b,\ b_2,\ldots,b_{n-i}$  such that  $BB_2\ldots B_{n-i}\subseteq C.$  From  $b\in B$  and  $b=[b_1/b_1\,a_i\cdots a_1\,b_{n-i}\cdots b_2]$  follows that there exist neighborhoods  $B_1',\ B_2''$  of  $b_1,\ A_1,\ldots,A_i$  of  $a_1,\ldots,a_i$  and  $b_2',\ldots,b'_{n-i}$  of  $b_2',\ldots,b'_{n-i}$ , such that  $[B_1'/B_1''\,A_1\cdots B_2']\subseteq B.$  Then we have:

$$(A_1 \cdots A_i)^{-1} = [b_1/b_1 A_i \cdots A_1 b_{n-i} \cdots b_2] b_2 \dots \dot{b_{n-i}} \subseteq$$

$$\subseteq [B_1'/B_1'' A_i \cdots A_1 B_{n-i} \cdots B_2] B_2 \cdots B_{n-i} = C.$$

Thus we have proved that the mapping  $s \to s^{-1}$  is continous, and this completes the proof of the statement (iii).

(iv) If the given space Q is compact then each cartezian product  $Q \times Q \times \cdots \times Q$  is a compact space, and hence  $Q^k$  is a compact subset of G, because the mapping  $(x_1, \ldots, x_k) \to x_1 \cdots x_k$  is continuous. Then G is a compact space for it is a union of n compact subsets  $Q, Q^2, \ldots, Q^n$ .

Assume now Q to be a Hausdorff space, and let  $s = a_1 \cdots a_i$ ,  $t = b_1 \cdots b_j$   $(a_v, b_\lambda \in Q, 1 \le i \le j \le n)$  be two different elements of G. If  $i \ne j$ , then  $Q^i$  is a neighborhood of s, and  $Q^j$  is a neighborhood of t, where  $Q^i \cap Q^j = \emptyset$ . If i = j, then for arbitrary  $c_0, \ldots, c_{n-i} \in Q$  we have:

$$(c_0\cdots c_{n-i}\ a_1\cdots a_i)=a\neq b=(c_0\cdots c_{n-i}\ b_1\cdots b_i),$$

and fherefore there are a neighborhood A of a and a neighborhood B of b such that  $A \cap B = \emptyset$ . Also, there exist neighborhoods  $C_0, \ldots, C_{n-i}$  of  $c_0, \ldots, c_{n-i}, A_1, \ldots, A_i$  of  $a_1, \ldots, a_i$  and  $B_1, \ldots, B_i$  of  $b_1, \ldots, b_i$  such that

$$(C_0 \cdots C_{n-i} A_1 A_i) \subseteq A, (C_0 \cdots C_{n-i} B_1 \cdots B_i) \subseteq B,$$

whence follows

$$c_0\cdots c_{n-i}\ A_1\cdots A_i\cap c_0\cdots c_{n-i}\ B_1\cdots B_i=\emptyset,$$

i. e.  $A \cap B = \emptyset$ , where  $A = A_1 \cdots A_i$  is a neighborhood of s, and  $B = B_1 \cdots B_i$  is a neighborhood of t. This completes the proof that G is a Hausdorff group.

### Some remarks

a) It is well known ([5], p. 21) that the notions of  $T_0$ ,  $T_1$  and  $T_2$  spaces are equivalent in the class of topological groups. Is the same statement true in the class of topological n-groups?

b) An algebra Q(...) with an n+1—ary operation (...) is said to be an n-semigroup if the identities (2) are satisfied. Then ([2], p. 23) there is a semigroup G (the free covering semigroup of Q) such that (4) and (5) are satisfied. If in addition the operation (...) is continuous (in the all variables together) then Q is said to be a topological n-semigroup Are the statements of Theorem true in the class of topological n-semigroups?

It is known ([3]) that every topological universal algebra  $A(\Omega)$  may be (in a corresponding way) embedded into a topological semigroup S, but even in the case when A is a topological n-semigroups, S is not the free covering of A.

c) A group G is said to be semitopological if G is a topological space in which each translation (left or right) is continuus. This notion for n-groups. can be generalized in an obvious way. Are the statements of Theorem true for semitopological n-groups?

#### REFERENCES

- [1] R. H. Bruck, A Survey of binary systems, Berlin-Götingen-Heidelberg, 1958.
- [2] Ѓ. Чупона, Полугрупи генерирани од асоцијативи, Год. 3б. Прир. мат фак. Скопје, Секц. А 15 (1964) 5-26.
- [3] , Сместување на тополошки алгебри во полугрупи, Билт, Друштмат, физ. Македонија XXI (1970) 37 42.
- [4] T. Husain, Introduction to Topological Groups, Saunders Company, Philadelphia London 1966.
- [5] E. L. Post, Polyadic Groups, Trans. Amer. Math. Soc. 48 (1940) 208-350.

## ЗА ТОПОЛОШКИТЕ п-ГРУПИ

## Ѓ. Чуйона

#### Резиме

Во работава се докажува следнава

Tеорема. Нека Q е тополошка n-група, а G групата што е слободна покривка на Q. Ако  $\mathcal{B}$  е фамилијата подмножества на G определена со:

$$\mathcal{B} = \{A_1 \cdots A_k \mid A_1, \dots, A_k \text{ се отворени во } Q\}$$

#### тогаш имаме:

- (i)  $\mathcal B$  е база на топологија  $\mathcal G$  над G, при што дадената топологија над Q е индуцирана од  $\mathcal G$ . Q е и отворено и затворено подмножество во G.
  - (ii) G е тополошка група во однос на топологијата  $\mathcal{G}$ .
- (iii) Ако тополошката n-група Q е компактна (Хаусдорфова), тогаш и тополошката група G е компактна (Хаусдорфова).

(Притоа, за алгебрата Q со три n+1— арни операции (...)[...], [/...] се вели дека е n-група, ако се исполнети идентитетите (2) и (3); групата G е слободна покривка на n-групата Q ако се исполнети условите (4), (5) и (6); n-групата Q се вика тополошка ако Q е тополошки простор, таков што операциите на n-групата се непрекинати.)